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In multiperiod portfolio selection one faces the problem of choosing a proper
multiperiod utility function, to determine the planning horizon and the number
of future opportunities as well as the financial consequences of these oppor-
tunities. In this paper an alternative approach is proposed where the initial
portfolio value is required to follow some given growth pattern. Following this
approach it is shown that under reasonable assumptions a solution can be
found that requires neither a utility function nor information about the plan-
ning horizon, the required growth rates, the number of future opportunities or
the financial consequences of these opportunities. c© 2005 Peking University Press
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1. INTRODUCTION

To solve portfolio problems it is required to estimate the financial con-
sequences of portfolio decisions and to formulate appropriate decision cri-
teria. Both requirements cause substantial diffculties for multiperiod port-
folio problems. In particular, if one follows the standard expected utility
maximization approach a proper multiperiod utility function and the prob-
ability distribution of multiperiod cashflows have to be determined. This
hardly can be done.

Clearly under such circumstances it would be helpful to have decision
criteria that are not based on expected utility maximization and that can
be applied even if the distribution of multiperiod cashflows is (completely
or in part) unknown.

Hellwig (2004), Hellwig, Speckbacher and Wentges (2000), Korn (1997,
1998, 2000), Korn and Schäl(1999) and Speckbacher(1998) analyse an ap-
proach to portfolio selection that is not based on expected utility max-
imization. According to this approach a portfolio is required to satisfy
two conditions. First, the portfolio should be efficient. That is, it should
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maximize the present value of future cashflows. Second, the present value
should follow a given growth pattern according to the growth preferences
of the investors. A portfolio that satisfies these conditions is called growth-
oriented.

Hellwig et al (2000) and Hellwig (2002) show that the approach is in-
compatible with utility maximization in the following sense. Suppose that
a growth-oriented portfolio has been found. The efficiency requirement
implies the existence of an increasing and concave utility function such
that the growth-oriented portfolio is maximizing utility. Now assume that
the set of feasible portfolios is changed. Then applying the same utility
function generally leads to a portfolio that is not growth-oriented. This
contradicts the utility maximizing approach where the utility function is
assumed to be independent from the feasible set.

In the following it is shown that under reasonable assumptions a growth-
oriented portfolio can be found even if there is little information about the
future.

2. THE DECISION PROBLEM

The following analysis is based on a standard event tree approach (e.g.
Huang/Litzenberger,1988).

S = {0, . . . , n} denotes the set of events (nodes), St the set of events at
time t where t = 0, . . . , N and S0 = {0}, N(s) the successors of s, F (s) the
immediate successors of s and s− the uniquely given immediate predecessor
of s.

There are m investment and/or financing opportunities. x = (x1, . . . , xm)T

denotes the activity level of these opportunities, A ∈ R(n+1)×m the payoff-
matrix, b = (b0, 0, . . . , 0)T ∈ Rn+1 the vector of endowments (b0 > 0) and
c = (0, c1, . . . , cn)T a consumption vector where it is assumed that b0 is
totally invested.

Then a growth oriented portfolio x is defined as a portfolio x that satisfies
the following conditions for some vector of positive prices p = (1, p1, . . . , pn)
(Hellwig, 2004).

(C1) p supports (x, c), that is (x, c) is an optimal solution of

V 0 = V0(c, p) := max{pc|c ∈ C}

where C = {c|c = Ax + b, x ≥ 0}.
(C2) p is compatible with the required growth of the initial value V 0

that is

V s = Vs(c, p) = (1 + αs)V s− , s = 1, . . . , n
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where Vs(c, p) = 1
ps

∑
k∈N(s) pkck = 1

ps

∑
k∈F (s) pk(Vk + ck) is the portfolio

value in s and αs is the required growth rate of the portfolio value between
s− and s.

Neither (C1) nor (C2) require information about the probability distri-
bution of the cashflows. Here the following information is assumed to be
available to the investor.

(A1) The investor estimates the probability for event s ∈ S1 to be πs > 0
where

∑
s∈S1

πs = 1.

This assumption seems reasonable because probability beliefs about events
in the near future generally are more reliable than probability beliefs about
events in the more distant future.

Given (A1) one can decompose ps(s ∈ S1) into πs and a risk-adjusted
discount factor qs : ps = πs · qs = πs/(1 + rs). rs can be understood as
the required return if event s is realized and ( C2) can be strengthenedto(
Hellwig2004 )

(C3) V s+cs

1+rs
= V 0 for all s ∈ S1. is required.

The formulation of the feasible set C allows to consider different oppor-
tunities in every node, short-selling (by appropriately defining the oppor-
tunities) and multi-period as well as single-period opportunities. Here the
following assumption is made.

(A2) At time zero only single-period opportunities are considered.

Assumption (A2) underlines most portfolio selection models such as the
Markowitz model.

It will be shown in the following that (A1) and (A2) imply the existence
of a uniquely given portfolio decision at time zero such that (C1) - (C3)
are satisfied.

This decision does not depend

• upon the growth rates αs, s = 1, . . . , n,
• upon the time horizon N ,
• upon the number of events after time t = 1,
• or upon the opportunities that can be realized from time t = 1 on-

wards, their financial consequences and the probability distribution of these
consequences.

3. THE SOLITION

Before presenting the main result some preliminary remarks are helpful.
Let (p, x, c) satisfy (C1) - (C3) where assumptions (A1) and (A2) are met.
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Then Ki =
∑

s aisps can be understood as the present value of opportunity
i. (C1) implies Ki ≤ 0 for all i and xi = 0 if Ki < 0. As a consequence
V 0 = b0.

(A2) implies V s = −
∑

i∈Is
aisxi(s ∈ S1) where Is denotes the set of

opportunities that can be realized in s. It follows that the cashflow fs(x) =∑
i∈I0

aisxi that results from the portfolio decision at time zero in s ∈ S1

is given by fs(x = cs + V s. Thus (C3) can be written as V s+cs

1+rs
= fs(x)

1+rs
=

V 0 = b0, s ∈ S1.

Theorem 1. Let (p, x, c) satisfy (C1) - (C3) and let assumptions (A1)
and (A2) be met. Then xi, i ∈ I0, is an optimal solution of (P):

max{
∑

s∈S1
πs ln fs|

∑
i∈I0

aioxi = b0, fs =
∑

i∈I0
aisxi for all s ∈ S1, xi ≥

0, i ∈ I0}.

Proof.
The necessary and sufficient conditions for a portfolio x∗ to be optimal

for (P) is that there exists w = (w0, . . . , wn) such that∑
s∈S1

aisws + aiow0 = : Wi ≤ 0, x∗i ≥ 0, (i = 1, . . . ,m)

Wi < 0 ⇒ x∗i = 0, i ∈ I0 (1)
πs/fs(x∗) = ws, s ∈ S1 (2)

Define ws := ps/b0 = πs

(1+rs)b0
. Then fs(x)

1+rs
= fs(x)wsb0/πs = b0 or

πs/fs(x) = ws. Thus (2) is satisfied. Because Wi = 1
b0

Ki the same holds
for (1). Therefore x = x∗ is the uniquely given optimal solutionof (P).

As an example assume three events at t = 1 and two investment oppor-
tunities P1 and P2 with the unit cashflows P1 : (−1; 1.1; 0.95; 1.05), P2 :
(−1; 0.9; 1; 1.15). For b0 = 100, π1 = 0.3, π2 = 0.2, π3 = 0.5 the opti-
mal solution of (P) is x1 ≈ 76.54, x2 ≈ 46.46, f1(x) ≈ 105.31, f2(x) ≈
96.17, f3(overlinex) ≈ 107.35. The associated rates of return are r1 ≈
5.31%, r2 ≈ −3.83%, r3 ≈ 7.35%. Assume now that event two is realized
at the end of the first period. Then, based on the information that the
investor has at that point of time, he has to decide upon the growth rate
α2. α2 is realized if c2 = 100(r2 − α2) ≈ 100(−0.0383 − α2). Thus if
α2 = r2 = −3.83% the investor can consume nothing. If α2 < r2 he can
consume a positive amount and if α2 > r2 he has to make an additional
payment.
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4. FINAL COMMENTS

1. The preceding analysis is based on the definition of value as present
value after consumption. The conclusions remain the same if the value is de-
fined as present value including consumption i.e. Vs(c, p) = 1

ps

∑
k∈N(s) pkck+

cs for all s.
2. The conclusions also remain the same if there are upper bounds for

the activities i ∈ I0. Such bounds may lead to an increase of the initial
value. In order to see this assume for the above example that at most 10
monetary units can be borrowed at an interest rate of 4%. Solving (P) with
this additional opportunity results in an optimal program x1 ≈ 84.12, x2 ≈
25.88, x3 = 10 where x3 is the amount borrowed. The associated rates of
return are r1 ≈ 5.39%, r2 ≈ −4.63%, r3 ≈ 7.66%. The present value of the
amount borrowed is KF ≈ 0.0029 and the initial value is V 0 = 100+KF ≈
100.0029.
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