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This paper re-examines the rank-dependent expected utility theory. Firstly,
we follow Quiggin’s assumption (Quiggin 1982) to deduce the rank-dependent
expected utility formula over lotteries and hence extend it to the case of general
random variables. Secondly, we utilize the distortion function which reflects
decision-makers’ beliefs to propose a distorted independence axiom and then to
prove the representation theorem of rank-dependent expected utility. Finally,
we make direct use of the distorted independence axiom to explain the Allais
paradox and the common ratio effect.
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1. INTRODUCTION

It is well known that the independence axiom (IA), the key behavioral
assumption of the expected utility (EU) theory, is often violated in practice
in experimental studies. Amongst other theories, the anticipated utility
(AU) theory, which is also known as rank-dependent expected utility —
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RDEU (Quiggin 1982, Segal 1989, and Quiggin and Wakker 1994), has
successfully resolved this issue. There exist several axiomatic systems for
this theory. The weak certainty equivalent substitution axiom in Quiggin
(1982) and Quiggin and Wakker (1994) implies that the weights function
maps 1

2 to 1
2 .1 However, such an assumption takes a lot of power out of

this theory. Segal (1989) utilizes a measure approach to axiomatize RDEU
theory. He proposes a projection IA to graphically compare two cumulative
distribution functions (or lotteries), which lacks normative appeal. Here we
propose a new axiomatic foundation to RDEU. In our opinion, the weights
function in RDEU reflects decision-makers’ beliefs and their attitude to
risks, and therefore can be treated as exogenous. Based on the weights
function, we propose a distorted independence axiom (DIA) and establish
a new axiomatic system to build the distorted theory of RDEU. This paper
also shows how DIA can be used directly to determine the specific forms of
weights function under which some examples violating IA would no longer
be paradoxical.

We first follow the assumption in Quiggin (1982) and Quiggin and Wakker
(1994) that the transformation of cumulative distribution functions (CDFs)
is continuous on the whole probability distribution. Applying the reduction
of lottery dimensions we prove the RDEU formula over lotteries and show
that it also holds for general (continuous) random variables. Quiggin’s as-
sumption is a breakthrough in successfully extending EU to RDEU. The
essence of the von Neumann - Morgenstern EU theory is a set of restric-
tions imposed on the preference relations over lotteries that allows their
representation by a mathematical expectation of a real function on the set
of outcomes. One main aspect of this theory is the specific functional form
of the representation, namely, the linearity in probabilities. The EU hy-
pothesis is widely used in various disciplines. However, it sometimes fails
to explain some counterexamples. Quiggin (1982) successfully resolves this
issue by proposing that probability weights of every prospect are derived
from the entire original probability distribution. He tries a special case of
three outcomes and writes the general form of his RDEU formula. Segal
(1987a) claims that this formula can be extended to any (one-stage) lot-
tery. In this paper we prove Quiggin’s RDEU formula over prospects by
using the continuity of utility function (von Neumann - Morgenstern) and
further generalize this formula for arbitrary random variables. For the case
of general random variables we employ Helly theorem to prove the RDEU
formula.

Then we re-axiomatize the RDEU theory along the line of Quiggin (1982),
Chew (1985) and Segal (1989), using the methods in Fishburn (1982) and
Yaari (1987). In the RDEU formula the transformation of CDFs or the deci-

1Later Chew (1985) removes this restriction.
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sion weights function reflects decision-makers’ beliefs. It ‘distorts’ prospect-
s’ probability distributions to reflect a decision maker’s own evaluation of
probabilities. Therefore we call it the distortion function. We can interpret
the distortion function as the decision-maker’s attitude to risk when choos-
ing among lotteries. In this paper we assume that this distortion function
is exogenous. We observe that the distortion function is also a CDF and
can be represented by a random variable. Therefore, the distorted CDF
also corresponds to a random variable, which is a compound of the inverse
of the CDF of a risky prospect and the random variable corresponding to
the distortion function. From this approach we provide our DIA, and hence
prove the representation theorem of RDEU by modifying EU. The format
of the distorted independence axiom (DIA) is analogous to IA, but in DIA
we use a mixture operator instead of the conventional addition. The inde-
pendence, instead of being hypothesized for convex combinations formed
along the CDFs, is postulated for convex combinations formed along the
distorted CDFs. Therefore, while IA is applied to the family of CDFs, DIA
is applied to the distorted CDFs.

We can use DIA directly to rationalize the most famous “paradoxes” in
uncertainty theory such as the Allais paradox (or the common consequences
effect) and the common ratio effect (or the certainty effect) without re-
sorting to the RDEU formula as in Segal (1987a). We use the distortion
function to transform the unit triangle in Machina (1987) to obtain trian-
gles under the framework of DIA. In the new unit triangles, indifference
curves keep parallel but positions of prospects change such that lines of
compared prospect pairs may not parallel. We show that the compared
prospects form parallelograms in the transformed unit triangle if and on-
ly if DIA reduces to IA. In this case the inconsistency in these paradoxes
would arise. Furthermore, we are able to show that in the transformed unit
triangle under DIA, when the distortion function takes specific forms such
that the lines of compared prospect pairs fan in, the behavioral patterns in
these examples may be rational. Our approach here fundamentally departs
from that of Machina (1987). In his diagrams, prospects are fixed and form
parallelograms while indifference curves fan out.

The RDEU theory has received several axiomatizations. In Quiggin
(1982) and Quiggin and Wakker (1994), a preference relation satisfies a
set of axioms including the key weak certainty equivalent substitution ax-
iom if and only if it has an expected utility with rank-dependent prob-
abilities where the probability transformation function maps 1

2 to 1
2 . As

Chew, Karni and Safra (1987), Röell (1987) and Segal (1987a) suggest,
risk aversion holds in this theory if and only if von Neumann-Morgendtern
utility function is concave and the weights function is convex. Assuming
that the weights function maps 1

2 to 1
2 takes much power out of the theory.

Chew (1985) shows that the latter restriction is not necessary. Segal (1989)
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presents another set of axioms to prove RDEU by a measure representation
approach. His projection IA is of a simple mathematical form which, in
our opinion, is lack of interpretations in terms of behavioral foundations.
Yaari (1987) also suggests an expected utility theory with rank-dependent
probabilities, but with the roles of payment and probability reversed. He
cites Fishburn’s (1982) five axioms in EU and replaces IA with the dual
IA. Our paper presents a more appealing axiomatic system for RDEU by
replacing the dual IA in Yaari (1987) with our DIA. To some extent, Yaari’s
theory can be treated as a special case of our distorted theory of RDEU.
The difference is that in RDEU the utility function is endogenous and the
distortion function is exogenous while in Yaari the endogeneity of these
two is reversed. Our paper further differs from Yaari (1987) in that all
random variables in Yaari’s model take values in the unit interval so that
the inverse of a CDF is still a CDF, but in our model random variables take
values from any (closed) interval. We use the distortion function which is
also a CDF to “distort” the CDF of a risky prospect.

There are other papers on RDEU. Chew, Karni and Safra (1987) and
Karni (1987) study the risk aversion in expected utility theory with rank-
dependent probabilities and state-dependent preferences. The RDEU ap-
proach can be used not only to explain the examples with uncertainty such
as the Allais paradox and the common ratio effect, but also to interpret
the Ellsberg paradox (Segal 1987b). Furthermore, Karni and Schmeidler
(1991) summarize the utility theory with uncertainty. On the other hand,
RDEU can be used to explain ambiguity aversion, as Miao(2004, 2009) and
Zou (2006).

This paper is composed of five sections. In section 2 we formally gen-
eralize the RDEU formula from Quiggin (1982) and Quiggin and Wakker
(1994). In section 3 we propose an axiomatic system with DIA and prove
the representation theorem of RDEU. Section 4 explains the Allais paradox
and the common ratio effect by directly using DIA, in addition to using
the RDEU formula. Section 5 concludes this paper.

2. RANK-DEPENDENT EXPECTED UTILITY FORMULA

This section outlines the RDEU theory, which represents decision mak-
ers’ preferences using mathematical expectations of a utility function with
respect to a transformation of probabilities on a set of outcomes. The
transformation function can be found by induction, and generally is not
a linear function of the CDF. Each component of the transformation is a
function of the whole probability distribution of the prospect and does not
depend upon the winning probability of this prize only. For the case of dis-
crete random variables we show that, for any natural number N = 1, 2, · · · ,
the N -th component is an increment of the transformation of the sum of
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the winning probabilities for the smallest N −1 outcomes. Further, we can
extend the EDRU formula to a more general one by using a convergence
theorem of CDFs.

Consider a compact interval [m,M ] of monetary prizes. Let L be the
set of lotteries (probability measures) over [m,M ] and L0 in L be the set
of lotteries with finite support. For each X ∈ L , its CDF of X is defined
by FX(x) = P{X ≤ x} for x ∈ [m,M ]. 2

Now we build the RDEU theory on L0. For any natural number N =
1, 2, · · · , denote XN = (xN1 , p

N
1 ; · · · ;xNN , p

N
N ) as a prospect, which yields

xNn dollars with probability pNn for n = 1, · · · , N , where xN1 ≤ xN2 ≤ · · · ≤
xNN−1 ≤ xNN in [m,M ], pNn ≥ 0 for n = 1, · · · , N , and

∑N
n=1 p

N
n = 1. The

RDEU function is defined to be

RDEU(XN ) =

N∑

n=1

HN
n (pN1 , · · · , pNN )U(xNn ) (1)

where HN
n : [0, 1]N → [0, 1] is a continuous function for n = 1, · · · , N

with
∑N
n=1H

N
n (pN1 , · · · , pNN ) = 1, and U is a continuous and increasing

von Neumann - Morgenstern utility function. (HN
1 , · · · , HN

N ) is a trans-
formation of the probability distribution and produces a new probability
distribution.

Quiggin (1982) assumes that, for n = 1, · · · , N , HN
n (pN1 , · · · , pNN ) is

a function of (pN1 , · · · , pNN ). Under the environment of the RDEU the-
ory, HN

n (pN1 , · · · , pNN ) is a function of (pN1 , · · · , pNn ) for n = 1, · · · , N ,
which is proved in this section by induction. For any N = 1, 2, · · · ,
XN = (xN1 , p

N
1 ; · · · ;xNN , p

N
N ) with

∑N
n=1 p

N
n = 1, we have

HN
1 (pN1 , · · · , pNN ) = g(pN1 ) (2)

HN
n (pN1 , · · · , pNN ) = g

(
n∑

n′=1

pNn′

)
− g

(
n−1∑

n′=1

pNn′

)
, for n = 2, · · · , N (3)

where g(p) = H2
1 (p, 1− p) for p ∈ [0, 1]. Thus we have the RDEU formula

in L0, which is an assertion in Quggin (1982).

Theorem 1 (Quiggin 1982). In the rank-dependent expected utility func-
tion (1), the behavior of HN

n (pN1 , · · · , pNN ) on arbitrary probability distribu-
tions is fully determined by the values of g as in (2) and (3).

2The CDF FX satisfies the following three conditions: [1] FX is non-decreasing; [2]
FX(m−) = 0 and FX(M) = 1; and [3] FX is right-continuous. If function F satisfies
the three conditions, then there exists a random variable X such that its CDF FX is
equal to F .
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From this theorem, the RDEU function in L0 is, forXN = (xN1 , p
N
1 ; · · · ;xNN , p

N
N ),

RDEU(XN ) = g(pN1 )U(xN1 ) +

N∑
n=2

[
g

(
n∑

n′=1

pNn′

)
− g

(
n−1∑
n′=1

pNn′

)]
U(xNn ). (4)

From (2) and (3), we have HN
n (pN1 , · · · , pNN ) is the increment of the trans-

formation of the sum of the first n−1 winning probabilities. Expression (4)
can be re-written in a general form as

RDEU(XN ) =

∫

[m,M ]

U(x)dg(FXN (x)).

From the proof of Theorem 1 in the Appendix, we summarize the property
of function g as follows.

Proposition 1. The function g is a continuous and increasing function
with g(0) = 0 and g(1) = 1.

Furthermore, on L we can also prove the rank-dependent expected util-
ity function by using a convergence theorem of CDFs.

Theorem 2. The rank-dependent expected utility function in L is

RDEU(X) =

∫

[m,M ]

U(x)dg(FX(x)). (5)

The RDEU formula describes a class of models of decision making under
risk in which risks are represented by CDFs, and preference relations on
risks are represented by mathematical expectations of a utility function
with respect to a transformation of probabilities on a set of outcomes.
The distinguishing characteristic of these models is that the transformed
probability of an outcome depends on the rank of the outcomes in the
induced preference ordering on the set of outcomes. When the function g
reduces to the identity, the RDEU formula reduces to the EU one. However,
EU does not depend on the rank of the outcomes.

3. A REPRESENTATION THEOREM OF
RANK-DEPENDENT EXPECTED UTILITY

In this section we axiomatize the RDEU theory, following the axiomatic
systems of Fishburn (1982) and Yaari (1987). We present our five axioms
and then prove the representation theorem.

As we know, the existence of von Neumann and Morgenstern EU is e-
quivalent to three axioms: the preference relation axiom, the independence
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(substitution) axiom, and the Archimedean axiom. The representation of
linearity in probabilities in EU is a direct consequence of the restriction
on preference relations known as IA. Fishburn (1982) proves the represen-
tation theorem of EU from an axiomatic system with five axioms which
has been widely used. The five axioms are the neutrality axiom, the com-
plete weak order axiom, the continuity (with respect to L1- convergence)
axiom, the monotonicity (with respect to first-order stochastic dominance)
axiom, and the independence axiom. IA is the key behavioral assumption
of EU, which is often violated in experimental studies. Yaari (1987) cites
Fishburn’s (1982) five axioms and replaces IA with the dual IA, and hence
establishes the dual theory of choice under risk. At the core of the du-
al theory is the dual IA. Yaari (1987) develops an expected utility theory
with rank-dependent probabilities (EURDP) with the roles of payments
and probabilities reversed. In this paper, we replace the dual IA in Yaari
(1987) with our DIA. We then use this system of five axioms to prove the
representation theorem of RDEU.

We first describe the five axioms in Yaari (1987) and the representation
theorem of EU. A strict preference relation � is assumed to be defined on
L . Let the symbols % and ∼ stand for preference relation and indifference
relation, respectively. The following axiom suggests itself:
[Axiom A1 - Neutrality]: Let X1 and X2 belong to L with respective
CDFs FX1

and FX2
. If FX1

= FX2
then X1 ∼ X2.

Denote F to be a family of CDFs by F = {F : [m,M ]→ [0, 1] | F is a CDF}.
Define � on F by F1 � F2 if and only if X1 � X2 for which F1 = FX1

and
F2 = FX2 .
[Axiom A2 - Weak Order]: � is asymmetric and negatively transitive.
[Axiom A3 - Continuity with respect to L1-Convergence]: Let
F1, F2, F

′
1, F

′
2 belong to F ; assume that F1 � F2. Then there exists an

ε > 0 such that ‖F1 − F ′1‖ < ε and ‖F2 − F ′2‖ < ε imply F ′1 � F ′2, where
‖ · ‖ is the L1-norm ‖F‖ =

∫
[m,M ]

|F (x)|dx.

[Axiom A4 - Monotonicity with respect to First-Order Stochastic
Dominance]: If FX1(x) ≤ FX2(x) for all x ∈ [m,M ], then FX1 % FX2 .
[Axiom A5EU - Independence (Substitution)]: If F1, F2 and F be-
long to F and α is a real number satisfying 0 < α < 1, then F1 � F2

implies αF1 + (1− α)F � αF2 + (1− α)F .
By using the five axioms, Yaari (1987) proves the following representation

theorem of EU, which is a modification of Fishburn (1982).

Theorem 3. A preference relation % satisfies Axioms A1 - A4 and
A5EU if and only if there exists a continuous and non-decreasing real func-
tion u, defined on [m,M ], such that, for all X1 and X2 belonging to L ,

X1 � X2 ⇐⇒ E[u(X1)] > E[u(X2)].
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Moreover, the function u, which is unique up to a positive transformation,
can be selected in such a way that, for all x ∈ [m,M ], u(x) solves the
preference equation

(m, 1− u(x);M,u(x)) ∼ (x, 1).

From Theorem 3, the expected utility is given by

EU(X) = E[u(X)] =

∫

[m,M ]

u(x)dFX(x).

We now present our DIA and prove the representation theorem of RDEU.
The distorted theory of choice under risk is obtained when IA (Axiom
A5EU) of EU is replaced. We postulate independence for convex combi-
nations that are formed along the distorted CDFs instead of for convex
combinations formed along the CDFs. The best way to achieve that is to
consider an appropriately defined distortion of CDFs.

In RDEU (Quiggin 1982 and Segal 1989), the rank-dependent expected
utility value is

RDEU(X) =

∫

[m,M ]

u(x)dg(FX(x)) =

∫

[m,M ]

u(x)d[g◦FX ](x)

which is in Section 2. The function g(p) = H2
1 (p, 1− p) for each p ∈ [0, 1]

defines the behavior of (H2
1 , H

2
2 ) on the pair (p, 1− p) in Theorem 1. Then

g : [0, 1] → [0, 1] is a transformation to change probability distributions.
As we have explained in above section, we can treat the function g as
exogenous; and we call it the distortion function. Suppose that g satisfies
some conditions such that g◦FX is a CDF, then we can represent the RDEU
value in the form of mathematical expectations. Thus the representation
theorem of RDEU can be checked by using Theorem 3 of EU. We now
consider the corresponding axiom for independence.

We assume that the distortion function g satisfies Proposition 1. Then
the function g is onto and invertible. The inverse of the function g, g−1 :
[0, 1] → [0, 1], also satisfies Proposition 1. In addition, We assume that
the function g : [0, 1] → [0, 1] and its inverse g−1 : [0, 1] → [0, 1] satisfy
Lipschitz conditions.

From Proposition 1, the function g : [0, 1]→ [0, 1] satisfies all the condi-
tions of CDFs. Then we can consider it as a CDF. Therefore there exists
a random variable ξ on [0, 1] such that g(p) = P{ξ ≤ p}. From now on we
always use ξ as the random variable with the CDF g.
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The inverse F−1 : [0, 1]→ [m,M ] of a CDF F : [m,M ]→ [0, 1] is given
by:

F−1(p) = sup{x ∈ [m,M ]|F (x) ≤ p}.

Proposition 2. Let X ∈ L be a random variable, then FX(X) follows
a uniform distribution on [0, 1]. If the random variable θ follows a uniform
distribution on [0, 1], for any CDF F , F−1(θ) follows the CDF F .

If the random variable θ follows the uniform distribution on [0, 1], the
random variable ξ on [0, 1] can be chosen from Proposition 2 as ξ = g−1(θ).
In fact,

P{ξ ≤ p} = P{g−1(θ) ≤ p} = P{θ ≤ g(p)} = g(p).

For any CDF F , we consider the compound function g◦F of the two
CDFs g and F , which is defined by

[g◦F ](x) = g(F (x)).

It is clear that g◦F satisfies all the conditions of CDFs. Then g◦F is a
CDF, and we call it a distorted CDF of CDF F .

For any distorted CDF g◦F , we have that

[g◦F ](x) = g(F (x)) = P{ξ ≤ F (x)} = P{F−1(ξ) ≤ x} = FF−1(ξ)(x)

which is the CDF of random variable F−1(ξ) = F−1(g−1(θ)) = [F−1◦g−1](θ)
= [g◦F ]−1(θ). Thus the compound function g◦F : [m,M ]→ [0, 1] is also a
CDF. Hence

g◦F = FF−1(ξ).

We denote the set of such distorted CDFs as

F ◦ = {g◦F ∈ F |F ∈ F} = {FF−1(ξ) ∈ F |F ∈ F}.

We can simply write F ◦ = g(F ). From the property of Proposition 1 we
have F ◦ = F .

A mixture operation for distorted CDFs in F ◦ may now be defined as
follows: if g◦F1 and g◦F2 belong to F ◦ and if 0 ≤ α ≤ 1, then α[g◦F1] ⊕
(1− α)[g◦F2] ∈ F ◦ is given by

α[g◦F1]⊕ (1− α)[g◦F2] ≡ g◦[αF1 + (1− α)F2].
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Equivalently, if FF−1
1 (ξ) and FF−1

2 (ξ) belong to F ◦ and if 0 ≤ α ≤ 1, then

αFF−1
1 (ξ) ⊕ (1− α)FF−1

2 (ξ) ∈ F ◦ is given by

αFF−1
1 (ξ) ⊕ (1− α)FF−1

2 (ξ) ≡ F[αF1+(1−α)F2]−1(ξ).

For some 0 ≤ α ≤ 1, α[g◦F1]⊕ (1− α)[g◦F2] = αFF−1
1 (ξ) ⊕ (1− α)FF−1

2 (ξ)

is called a harmonic convex combination of F1 and F2. With the operation
⊕, the set F ◦ of all distorted CDFs becomes a mixture space.

Returning to the preference relation %, we are now in a position to state
the axiom that gives rise to the distorted theory of choice under risk:
[Axiom A5 - Distorted Independence]: If g◦F1 , g◦F2 and g◦F belong
to F ◦ and α is a real number satisfying 0 < α < 1, then g◦F1 � g◦F2

implies

α[g◦F1]⊕ (1− α)[g◦F ] � α[g◦F2]⊕ (1− α)[g◦F ].

Equivalently, this axiom can be written as
[Axiom A5 - Distorted Independence]: If FF−1

1 (ξ) , FF−1
2 (ξ) and

FF−1(ξ) belong to F ◦ and α is a real number satisfying 0 < α < 1, then
FF−1

1 (ξ) � FF−1
2 (ξ) implies

αFF−1
1 (ξ) ⊕ (1− α)FF−1(ξ) � αFF−1

2 (ξ) ⊕ (1− α)FF−1(ξ).

For any distorted CDF F ◦ in F ◦, there exists a CDF F in F such that
F ◦ = g◦F , then F ◦(x) = [g◦F ](x) = g(F (x)) and F (x) = g−1(F ◦(x)) =
[g−1◦F ◦](x) for x ∈ [m,M ], hence F = g−1◦F ◦. A mixture operation for
CDFs in F ◦ can be defined as follows: if F ◦1 and F ◦2 belong to F ◦ and if
0 ≤ α ≤ 1, then αF ◦1 ⊕ (1− α)F ◦2 ∈ F ◦ is given by

αF ◦1 ⊕ (1− α)F ◦2 ≡ g◦{α[g−1◦F ◦1 ] + (1− α)[g−1◦F ◦2 ]}.

Then we can write DIA in a simple form.
[Axiom A5 - Distorted Independence]: If F1 , F2 and F belong to
F ◦ and α is a real number satisfying 0 < α < 1, then F1 � F2 implies
αF1 ⊕ (1− α)F � αF2 ⊕ (1− α)F .

From the above axioms, we have the following representation theorem of
RDEU by using Theorem 3.

Theorem 4. Assume that the distortion function g and its inverse g−1

satisfy Lipschitz conditions. A preference relation % satisfies Axioms A1 -
A5 if and only if there exists a continuous and non-decreasing real function
u, defined on [m,M ], such that, for all X1 and X2 belonging to L ,

X1 � X2 ⇐⇒
∫

[m,M ]

u(x)dg(FX1
(x)) >

∫

[m,M ]

u(x)dg(FX2
(x)). (6)
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Moreover, the function u, which is unique up to a positive transformation,
can be selected in such a way that, for all x ∈ [m,M ], u(x) solves the
preference equation

g◦F(m,1−u(x);M,u(x)) ∼ g◦F(x,1). (7)

We first note that g−1 satisfying Lipschitz condition is not required for
the proof of the sufficient condition for (6). We also note that from Theorem
4, the rank-dependent expected utility is given by

RDEU(X) =

∫

[m,M ]

u(x)dg(FX(x)) =

∫

[m,M ]

u(x)d[g◦FX ](x)

=

∫

[m,M ]

u(x)dFF−1
X (ξ)(x) = E[u(F−1X (ξ))] (8)

which is presented in Quiggin (1982) and Segal (1987a and 1989). Chew,
Karni and Safra (1987) state that the distortion function g is Lipschitz
continuous on [0, 1] if and only if the RDEU functional in (8) is weakly
Gateaux differentiable on F .

If all random variables take values in the unit interval [0, 1], Yaari (1987)
proposes the dual IA as follows: If FX1

, FX2
and FX in F are pairwise

comonotonic and α is a real number satisfying 0 < α < 1, then FX1 � FX2

implies

αFX1
� (1− α)FX � αFX2

� (1− α)FX

where αFX′ � (1− α)FX ≡ FαX′+(1−α)X . Using Axioms A1 - A4 and his
dual IA, he then proves his EURDP (Yaari’s Theorem of Dual Theory) in
which the utility function in payments is linear. The dual utility is given
by

DU(X) =

∫

[0,1]

f0(1− FX(x))dx = −
∫

[0,1]

xdf0(1− FX(x)).

Define g0 : [0, 1]→ [0, 1] by g0(p) = 1− f0(1− p), then we have

DU(X) =

∫

[0,1]

xdg0(FX(x)).

If we take the utility function u in Theorem 4 to be linear, then RDEU
degenerates into Yaari’s dual utility. Yaari’s dual utility can be considered
as a special case of Quiggin’s AU/RDEU. In Theorem 4 of RDEU, the
utility function u is endogenous and the distortion function g is exogenous,
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while, in Yaari’s Theorem of Dual Theory, the weights function f0 (and
hence g0) is endogenous but the utility function u is exogenous and linear.

Yaari (1987) considers random variables assuming values in the unit in-
terval [0, 1] (that is, [m,M ] = [0, 1]); then the inverse of a CDF is also a
CDF. However, for a general interval [m,M ] 6= [0, 1], the inverse of a CDF
is not a CDF. Therefore we introduce the distortion function such that the
distorted CDF is a CDF. As we have seen earlier, the distorted function is
a CDF and there exists a random variable following this distribution; hence
we can find the random variable associated with the distorted CDF. This
is what leads us to obtain the distorted theory of rank-dependent expected
utility.

To unravel the paradoxes in next section, we need to use the specific
forms of the RDEU formula. From Theorems 2 and 4, the rank-dependent
expected utility value of random variable X ∈ L is

RDEU(X) =

∫

[m,M ]

u(x)dg(FX(x)) = u(M)−
∫ M

m

g(FX(x))du(x).

We define a decision-weights function f : [0, 1] → [0, 1] by f(p) = 1 −
g(1− p); then it also satisfies f(0) = 0 and f(1) = 1. Therefore the RDEU
functional is given by

RDEU(X) = −
∫

[m,M ]

u(x)df(1−FX(x)) = u(m)+

∫ M

m

f(1−FX(x))du(x).

When we consider a simple lottery X = (x1, p1; · · · ;xN , pN ), the RDEU
functional is

RDEU(X) = g(p1)u(x1) +

N∑

n=2

[
g

(
n∑

n′=1

pn′

)
− g

(
n−1∑

n′=1

pn′

)]
u(xn)

= u(xN )−
N∑

n=2

g

(
n−1∑

n′=1

pn′

)
[u(xn)− u(xn−1)]. (9)

and

RDEU(X) =

N−1∑

n=1

[
f

(
N∑

n′=n

pn′

)
− f

(
N∑

n′=n+1

pn′

)]
u(xn) + f(pN )u(xN )

= u(x1) +

N∑

n=2

f

(
N∑

n′=n

pn′

)
[u(xn)− u(xn−1)]. (10)
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The expressions (9) – (10) are more concise formulas of the RDEU theory
for discrete random variables.

4. DIRECT APPLICATIONS OF DISTORTED
INDEPENDENCE AXIOM

In this section, we show the significance of DIA. We use DIA directly to
rationalize two famous examples — the Allais paradox and the common
ratio effect. The two examples are inconsistent with IA and EU, but may
agree with RDEU, which can be checked by applying RDEU formulas (9)—
(10) (Segal 1987a and 1989). Using DIA directly, we can determine the
functional forms of the distortion function such that the two examples are
paradoxical. Furthermore, we look beyond these functional forms and are
able to obtain conditions under which the two examples accord with DIA.

In order to explain the roles played by IA and DIA for the two examples,
we will use isosceles right triangles in Machina (1987). As he demonstrates
in his well-known article, the set of all prospects over the fixed outcome
levels 0 < x < y can be represented by the set of all probability triples of the
form (p0, px, py) where p0 = P{X = 0}, px = P{X = x}, py = P{X = y},
and p0 + px + py = 1. Graphically, this set of gambles can be represented
in two dimensions, in (p0, py) plane (Figure 1), since the third dimension,
px, is implicit in the graph by px = 1 − p0 − py. Then the indifference
curves under EU in the triangle diagram are straight lines with the same
slope, which illustrates the property of linearity in probabilities. Attitude
to risk can also be illustrated in the unit triangle where relatively steep
utility indifference curves represent risk aversion and relatively flat utility
indifference curves represent risk loving.

FIG. 1. Indifference curves under EU in the triangle diagram. Solid lines are indif-
ference curves and dotted lines are iso-expected value lines.
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4.1. The Allais Paradox

[The Allais Paradox]: Consider the following two problems:
Problem 1: Choose between

A1 = (0, 1−p−ε; x, p+ε) and A2 = (0, 1−q−ε; x, ε; y, q);

Problem 2: Choose between

A3 = (0, 1−p; x, p) and A4 = (0, 1−q; y, q)

where 0 < x < y, 0 < q < p < 1, and 0 < ε ≤ 1− p. Most people prefer A1

to A2 and A4 to A3 (Allais 1953). However, they are not consistent with
IA or EU. Allais (1953) takes the parameter values as x = $1m, y = $5m,
p = 0.11, q = 0.10, and ε = 0.89. In Kahneman and Tversky (1979),
x = 2400, y = 2500, p = 0.34, q = 0.33, and ε = 0.66.

FIG. 2. The Allais Paradox and the Independence Axiom
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Figure 4.2: The Allais Paradox and the Independence Axiom

EU implies that A1 � A2 and A3 � A4 are equivalent. Under RDEU, A1 � A2 and

A4 � A3 are compatible if and only if the distortion function g is concave (Segal 1987a).

Under IA, A1 � A2 is only compatible with A3 � A4, which we use the unit triangle to

illustrate. Later we will apply DIA to the unit triangle to resolve the paradox. Figure 4.2

shows us the four prospects A1, A2, A3 and A4 in the plane (p0, py), where A1A2 ‖ A3A4 and

A1A3 ‖ A2A4. Slope of A1A2 = Slope of A3A4 =
q

p− q . We can find two pairs of prospects

to represent the original four prospects A1, A2, A3, and A4. Figure 4.2 reports how to take
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EU implies that A1 � A2 and A3 � A4 are equivalent. Under RDEU,
A1 � A2 and A4 � A3 are compatible if and only if the distortion function
g is concave (Segal 1987a). Under IA, A1 � A2 is only compatible with
A3 � A4, which we use the unit triangle to illustrate. Later we will apply
DIA to the unit triangle to resolve the paradox. Figure 2 shows us the four
prospects A1, A2, A3 and A4 in the plane (p0, py), where A1A2 ‖ A3A4 and

A1A3 ‖ A2A4. Slope of A1A2 = Slope of A3A4 =
q

p− q . We can find two

pairs of prospects to represent the original four prospects A1, A2, A3, and
A4. Figure 2 reports how to take the two pairs of new prospects. First, we
take point C2 to be the intersection of line XA2 and line ZY and point C1

to be the point on the line XZ such that C1C2 ‖ A1A2. Then we take D1

to be X (the origin) and D2 to be Z. The two pairs of prospects are defined
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as C1 =

(
0,

1−p−ε
1−ε ;x,

p

1−ε

)
and C2 =

(
0,

1−q−ε
1−ε ; y,

q

1−ε

)
, D1 = (x, 1)

and D2 = (0, 1). Then A1 = (1−ε)C1 + εD1 and A2 = (1−ε)C2 + εD1,
A3 = (1−ε)C1 + εD2 and A4 = (1−ε)C2 + εD2. In addition, FA1

=
(1−ε)FC1

+ εFD1
and FA2

= (1−ε)FC2
+ εFD1

, FA3
= (1−ε)FC1

+ εFD2

and FA4 = (1−ε)FC2 + εFD2 . From IA, FC1 � FC2 implies FA1 � FA2 and
FA3 � FA4 . Then A1 � A2 is only compatible with A3 � A4.

4.1.1. Under DIA, the distortion function g is the identity if and only if
A′1A

′
2 ‖ A′3A′4, and in this case A1 � A2 and A3 � A4 hold simultaneously

Now we explain this paradox by directly using DIA. In Figure 3, we

define four CDFs FA′1 , FA′2 , FA′3 and FA′4 in F as FA′1 = g−1◦FA1
, FA′2 =

g−1◦FA2 , FA′3 = g−1◦FA3 and FA′4 = g−1◦FA4 . That is,

A′1 = (0, g−1(1−p−ε); x, 1− g−1(1−p−ε)),
A′2 = (0, g−1(1−q−ε); x, g−1(1−q)− g−1(1−q−ε); y, 1− g−1(1−q)),
A′3 = (0, g−1(1−p); x, 1− g−1(1−p)),
A′4 = (0, g−1(1−q); y, 1− g−1(1−q)).

We take point C ′2 to be the intersection of line X ′A′2 and line Z ′Y ′ and

point C ′1 to be the point on the line X ′Z ′ such that C ′1C
′
2 ‖ A′1A′2. Then

the two prospects can be expressed as

C ′1 =

(
0,

g−1(1−p−ε)
1−g−1(1−q)+g−1(1−q−ε) ; x, 1− g−1(1−p−ε)

1−g−1(1−q)+g−1(1−q−ε)

)
;

C ′2 =

(
0,

g−1(1−q−ε)
1−g−1(1−q)+g−1(1−q−ε) ; y,

1− g−1(1−q)
1−g−1(1−q)+g−1(1−q−ε)

)
.

Then A′1 = (1−ε′)C ′1 + ε′D′1 and A′2 = (1−ε′)C ′2 + ε′D′1 where ε′ =

g−1(1−q)−g−1(1−q−ε). In addition, FA′1 = (1−ε′)FC′1 + ε′FD′1 and FA′2 =

(1−ε′)FC′2 + ε′FD′1 . Then

FA1 = g ◦ FA′1 = g ◦ [(1−ε′)FC′1 + ε′FD′1 ] = (1−ε′)[g ◦ FC′1 ]⊕ ε′[g ◦ FD′1 ];

FA2
= g ◦ FA′2 = g ◦ [(1−ε′)FC′2 + ε′FD′1 ] = (1−ε′)[g ◦ FC′2 ]⊕ ε′[g ◦ FD′1 ].

From DIA, g ◦ FC′1 � g ◦ FC′2 implies FA1 � FA2 .

As we know A′1A
′
3 ‖ A′2A′4, then

|D′2A′4|
|D′2C ′2|

=
|D′1A′2|
|D′1C ′2|

=
|D′1A′1|
|D′1C ′1|

= 1−ε′.

If
|D′2A′3|
|D′2C ′1|

= 1−ε′, then C ′1C
′
2 ‖ A′3A′4, and hence A′3 = (1−ε′)C ′1 + ε′D′2
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FIG. 3. The Allais Paradox and the Distorted Independence Axiom
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Figure 4.3: The Allais Paradox and the Distorted Independence Axiom

FA′3 = (1−ε′)FC′1 + ε′FD′2 and FA′4 = (1−ε′)FC′2 + ε′FD′2 . Then

FA3 = g ◦ FA′3 = g ◦ [(1−ε′)FC′1 + ε′FD′2 ] = (1−ε′)[g ◦ FC′1 ]⊕ ε′[g ◦ FD′2 ];

FA4 = g ◦ FA′4 = g ◦ [(1−ε′)FC′2 + ε′FD′2 ] = (1−ε′)[g ◦ FC′2 ]⊕ ε′[g ◦ FD′2 ].

From DIA, g ◦ FC′1 � g ◦ FC′2 implies FA3 � FA4 .

The condition
|D′2A′3|
|D′2C ′1|

= 1−ε′ implies

g−1(1−p)

1− g−1(1−p−ε)
1−g−1(1−q)+g−1(1−q−ε)

= 1−g−1(1−q)+g−1(1−q−ε).

Therefore, we have, for any 0 < q < p < 1 and 0 < ε ≤ 1− p,

g−1(1−q)− g−1(1−q−ε) = g−1(1−p)− g−1(1−p−ε). (4.1)

Then g−1(1−p)− g−1(1−p−ε) is independent of p. For any 0 < p < 1 and 0 < ε ≤ 1− p,

g−1(1−p)− g−1(1−p−ε) = R(ε). (4.2)

Differentiating (4.2) with respect to p, we then have [g−1]′(1−p) = [g−1]′(1−p−ε). That is,

[g−1]′(1 − p) is a constant and thus g−1 is linear. Since g−1(0) = 0 and g−1(1) = 1, then

g−1(p) = p and g(p) = p. Therefore the distortion function g is the identity. In this case

A1 � A2 is only compatible with A3 � A4.

16

and A′4 = (1−ε′)C ′2 + ε′D′2. In addition, FA′3 = (1−ε′)FC′1 + ε′FD′2 and

FA′4 = (1−ε′)FC′2 + ε′FD′2 . Then

FA3
= g ◦ FA′3 = g ◦ [(1−ε′)FC′1 + ε′FD′2 ] = (1−ε′)[g ◦ FC′1 ]⊕ ε′[g ◦ FD′2 ];

FA4 = g ◦ FA′4 = g ◦ [(1−ε′)FC′2 + ε′FD′2 ] = (1−ε′)[g ◦ FC′2 ]⊕ ε′[g ◦ FD′2 ].

From DIA, g ◦ FC′1 � g ◦ FC′2 implies FA3
� FA4

.

The condition
|D′2A′3|
|D′2C ′1|

= 1−ε′ implies

g−1(1−p)

1− g−1(1−p−ε)
1−g−1(1−q)+g−1(1−q−ε)

= 1−g−1(1−q)+g−1(1−q−ε).

Therefore, we have, for any 0 < q < p < 1 and 0 < ε ≤ 1− p,

g−1(1−q)− g−1(1−q−ε) = g−1(1−p)− g−1(1−p−ε). (11)

Then g−1(1−p)− g−1(1−p−ε) is independent of p. For any 0 < p < 1 and

0 < ε ≤ 1− p,

g−1(1−p)− g−1(1−p−ε) = R(ε). (12)

Differentiating (12) with respect to p, we then have [g−1]′(1−p) = [g−1]′(1−p−ε).
That is, [g−1]′(1−p) is a constant and thus g−1 is linear. Since g−1(0) = 0

and g−1(1) = 1, then g−1(p) = p and g(p) = p. Therefore the distortion

function g is the identity. In this case A1 � A2 is only compatible with

A3 � A4.
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In summary, we find the condition for the distortion function such that

A′1A
′
2 ‖ C ′1C ′2 ‖ A′3A′4 and hence

1− g−1(1−q)
g−1(1−q−ε)− g−1(1−p−ε) = Slope of A′1A

′
2

= Slope of A′3A
′
4 =

1− g−1(1−q)
g−1(1−q)− g−1(1−p) .

Then we have (11) and the distortion function g is the identity. In this

case DIA reduces to IA and the RDEU formula reduces to the EU one, and

we have A1 � A2 and A3 � A4 hold simultaneously.

4.1.2. A Closer Look

Now we take a closer look at the Allais paradox by using DIA in the unit

triangle. In the left diagram of Figure 3, the indifference curves under EU

are linear; and in the right diagram of Figure 3 which is the transformed

triangle, the indifference curves are also linear. Based on Figure 3, we can

use DIA directly to explain the Allais paradox. As we have shown above,

Slope of A′1A
′
2 =

1− g−1(1−q)
g−1(1−q−ε)− g−1(1−p−ε) ;

Slope of A′3A
′
4 =

1− g−1(1−q)
g−1(1−q)− g−1(1−p) .

FIG. 4. Rationalization of the Allais Paradox by DIA. A0, A1, and A2 correspond
to the cases that g is the identity, g is concave, and g is convex, respectively.

In summary, we find the condition for the distortion function such that A′1A
′
2 ‖ C ′1C ′2 ‖ A′3A′4

and hence

1− g−1(1−q)
g−1(1−q−ε)− g−1(1−p−ε) = Slope of A′1A

′
2 = Slope of A′3A

′
4 =

1− g−1(1−q)
g−1(1−q)− g−1(1−p) .

Then we have (4.1) and the distortion function g is the identity. In this case DIA reduces to

IA and the RDEU formula reduces to the EU one, and we have A1 � A2 and A3 � A4 hold

simultaneously.

4.1.2 A Closer Look

Now we take a closer look at the Allais paradox by using DIA in the unit triangle. In the left

diagram of Figure 4.3, the indifference curves under EU are linear; and in the right diagram of

Figure 4.3 which is the transformed triangle, the indifference curves are also linear. Based on

Figure 4.3, we can use DIA directly to explain the Allais paradox. As we have shown above,

Slope of A′1A
′
2 =

1− g−1(1−q)
g−1(1−q−ε)− g−1(1−p−ε) ;

Slope of A′3A
′
4 =

1− g−1(1−q)
g−1(1−q)− g−1(1−p) .
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Figure 4.4: Rationalization of the Allais Paradox by DIA. A0, A1, and A2 correspond to the

cases that g is the identity, g is concave, and g is convex, respectively.

The distortion function g is the identity if and only if Slope of A′1A
′
2 = Slope of A′3A

′
4 if and only

if A′1A
′
2 ‖ A′3A′4 if and only if A1 � A2 and A3 � A4. In the right-hand-side of Figure 4.4 we

17

The distortion function g is the identity if and only if Slope of A′1A
′
2 =

Slope of A′3A
′
4 if and only if A′1A

′
2 ‖ A′3A′4 if and only if A1 � A2 and
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A3 � A4. In the right-hand-side of Figure 4 we use superscript 0 to replace
′ in A′ to denote for this case. As we know, under RDEU, A1 � A2 and

A4 � A3 are compatible if and only if g is concave. Does this result hold

under DIA? We discuss the two cases where g is not the identity as follows.

Note [g−1]′′(g(p)) = − g′′(p)

[g′(p)]3
.

[1] The distortion function g is concave if and only if the weights func-

tion g−1 is convex if and only if g−1(1−p) − g−1(1−p−ε) < g−1(1−q) −
g−1(1−q−ε) if and only if g−1(1−q−ε)−g−1(1−p−ε) < g−1(1−q)−g−1(1−p)
if and only if Slope of A′1A

′
2 > Slope of A′3A

′
4. In the right-hand-side of

Figure 4 we use superscript 1 to replace ′ in A′. In this case, it is possible

that A1 � A2 and A4 � A3 are compatible.

[2] The distortion function g is convex if and only if the weights func-

tion g−1 is concave if and only if g−1(1−p) − g−1(1−p−ε) > g−1(1−q) −
g−1(1−q−ε) if and only if g−1(1−q−ε)−g−1(1−p−ε) > g−1(1−q)−g−1(1−p)
if and only if Slope of A′1A

′
2 < Slope of A′3A

′
4. In the right-hand-side of

Figure 4 we use superscript 2 to replace ′ in A′. In this case, A1 � A2 and

A3 � A4 are compatible.

We summarize the above results from the view of DIA as follows.

1. The distortion function g is the identity if and only if A′1A
′
2 ‖ A′3A′4,

then A1 � A2 and A3 � A4 hold simultaneously.

2. The distortion function g is concave if and only if Slope of A′1A
′
2 >

Slope of A′3A
′
4, and it is possible that A1 � A2 and A4 � A3 are compatible.

3. The distortion function g is convex if and only if Slope of A′1A
′
2 <

Slope of A′3A
′
4, then A1 � A2 and A3 � A4 are compatible.

4.2. The Common Ratio Effect

[The Common Ratio Effect]: Consider the following two problems:

Problem 1: Choose between

A1 = (0, 1−p; x, p) and A2 = (0, 1−q; y, q);

Problem 2: Choose between

A3 = (0, 1−λp; x, λp) and A4 = (0, 1−λq; y, λq)

where 0 < x < y, 0 < q < p ≤ 1, and 0 < λ < 1. Most people prefer A1

to A2 and A4 to A3 (MacCrimmon and Larsson 1979). However, they are

not consistent with IA or EU. MacCrimmon and Larsson (1979) take the

parameter values as x = $1m, y = $5m, p = 1.00, q = 0.80, and λ = 0.05.
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In Kahneman and Tversky (1979), x = 3000, y = 4000, p = 1.00, q = 0.80,

and λ = 0.25.

EU implies that A1 � A2 and A3 � A4 are equivalent. Under RDEU

A1 � A2 and A4 � A3 are compatible if and only if the elasticity of the

weights function f is increasing (Segal 1987a). Under IA, FA1
� FA2

implies FA3 � FA4 , which we illustrate in the unit triangle. Later we will

apply DIA to the unit triangle to resolve the common ratio effect. Figure 5

shows us the four prospects A1, A2, A3 and A4 in the plane (p0, py), where

A1A2 ‖ A3A4 (Slope of A1A2 = Slope of A3A4 =
q

p−q ). Define D = (0, 1).

then A3 = λA1+(1−λ)D and A4 = λA2+(1−λ)D, FA3 = λFA1 +(1−λ)FD
and FA4

= λFA2
+ (1−λ)FD. From IA, FA1

� FA2
implies FA3

� FA4
.

FIG. 5. The Common Ratio Effect and the Independence Axiom

q = 0.80, and λ = 0.05. In Kahneman and Tversky (1979), x = 3000, y = 4000, p = 1.00,

q = 0.80, and λ = 0.25.

EU implies that A1 � A2 and A3 � A4 are equivalent. Under RDEU A1 � A2 and

A4 � A3 are compatible if and only if the elasticity of the weights function f is increasing

(Segal 1987a). Under IA, FA1 � FA2 implies FA3 � FA4 , which we illustrate in the unit triangle.

Later we will apply DIA to the unit triangle to resolve the common ratio effect. Figure 4.5

shows us the four prospects A1, A2, A3 and A4 in the plane (p0, py), where A1A2 ‖ A3A4

(Slope of A1A2 = Slope of A3A4 =
q

p−q ). Define D = (0, 1). then A3 = λA1 + (1−λ)D and

A4 = λA2+(1−λ)D, FA3 = λFA1 +(1−λ)FD and FA4 = λFA2 +(1−λ)FD. From IA, FA1 � FA2

implies FA3 � FA4 .
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Figure 4.5: The Common Ratio Effect and the Independence Axiom

4.2.1 Under DIA, the weights function f is of constant elasticity if and only if

A′1A
′
2 ‖ A′3A′4, and in this case A1 � A2 and A3 � A4 hold simultaneously

Now we explain this example by using DIA. Define two new prospects to beA′1 = (0, g−1(1−p);
x, 1− g−1(1−p)) and A′2 = (0, g−1(1−q); y, 1− g−1(1−q)) such that their CDFs FA′1 and FA′2

in F satisfy FA1 = g◦FA′1 and FA2 = g◦FA′2 , as illustrated in Figure 4.6. By DIA, FA1 � FA2 if

and only if g◦FA′1 � g◦FA′2 implies, for any α ∈ [0, 1] and 0 ≤ z ≤ x, α[g◦FA′1 ]⊕ (1−α)[g◦Gz] �
α[g◦FA′2 ]⊕ (1−α)[g◦Gz]. That is, g◦[αFA′1 + (1−α)Gz] � g◦[αFA′2 + (1−α)Gz].

We take D′ such that FD′ = g−1◦FD, then D′ = D = (0, 1). For 0 ≤ z ≤ x, define Gz in F

19

4.2.1. Under DIA, the weights function f is of constant elasticity if and

only if A′1A
′
2 ‖ A′3A′4, and in this case A1 � A2 and A3 � A4 hold simul-

taneously

Now we explain this example by using DIA. Define two new prospects

to be A′1 = (0, g−1(1−p); x, 1− g−1(1−p)) and A′2 = (0, g−1(1−q); y, 1−
g−1(1−q)) such that their CDFs FA′1 and FA′2 in F satisfy FA1 = g◦FA′1
and FA2

= g◦FA′2 , as illustrated in Figure 6. By DIA, FA1
� FA2

if

and only if g◦FA′1 � g◦FA′2 implies, for any α ∈ [0, 1] and 0 ≤ z ≤ x,

α[g◦FA′1 ] ⊕ (1−α)[g◦Gz] � α[g◦FA′2 ] ⊕ (1−α)[g◦Gz]. That is, g◦[αFA′1 +

(1−α)Gz] � g◦[αFA′2 + (1−α)Gz].

We take D′ such that FD′ = g−1◦FD, then D′ = D = (0, 1). For

0 ≤ z ≤ x, define Gz in F to be a CDF for a degenerate distribution
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which assigns the value z with probability 1. Then the random variable is

δz = (z, 1) and hence G0 = FD = FD′ .

FIG. 6. The Common Ratio Effect and the Distorted Independence Axiom

to be a CDF for a degenerate distribution which assigns the value z with probability 1. Then

the random variable is δz = (z, 1) and hence G0 = FD = FD′ .
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Figure 4.6: The Common Ratio Effect and the Distorted Independence Axiom

We now find α ∈ [0, 1] such that FA3 = g ◦ [αFA′1 + (1−α)FD′ ] and FA4 = g ◦ [αFA′2 +

(1−α)FD′ ]. Define A′3 and A′4 as FA′3 = αFA′1 + (1−α)FD′ and FA′4 = αFA′2 + (1−α)FD′ , then

FA3 = g◦FA′3 and FA4 = g◦FA′4 (See Figure 4.6). In this case, A′3A
′
4 ‖ A′1A′2 and A3 � A4.

1− λp = g(αg−1(1−p) + (1−α))

1− λq = g(αg−1(1−q) + (1−α)).

Thus for any 0 < q < p < 1 and 0 < λ < 1,

α =
1− g−1(1−λp)
1− g−1(1−p) =

1− g−1(1−λq)
1− g−1(1−q) . (4.3)

Then
1− g−1(1−λp)
1− g−1(1−p) is independent of p. For any 0 < p < 1 and 0 < λ < 1,

1− g−1(1−λp)
1− g−1(1−p) =

R(λ) ∈ [0, 1]. That is,

1− g−1(1−λp) = R(λ)[1− g−1(1−p)] (4.4)

with R(1) = 1. Differentiating (4.4) with respect to p and λ, we then have

λ[g−1]′(1−λp) = R(λ)[g−1]′(1−p)

p[g−1]′(1−λp) = R′(λ)[1− g−1(1−p)]

20

We now find α ∈ [0, 1] such that FA3
= g ◦ [αFA′1 + (1−α)FD′ ] and

FA4 = g◦[αFA′2 +(1−α)FD′ ]. Define A′3 and A′4 as FA′3 = αFA′1 +(1−α)FD′

and FA′4 = αFA′2 + (1−α)FD′ , then FA3
= g◦FA′3 and FA4

= g◦FA′4 (See

Figure 6). In this case, A′3A
′
4 ‖ A′1A′2 and A3 � A4.

1− λp = g(αg−1(1−p) + (1−α))

1− λq = g(αg−1(1−q) + (1−α)).

Thus for any 0 < q < p < 1 and 0 < λ < 1,

α =
1− g−1(1−λp)
1− g−1(1−p) =

1− g−1(1−λq)
1− g−1(1−q) . (13)

Then
1− g−1(1−λp)
1− g−1(1−p) is independent of p. For any 0 < p < 1 and 0 < λ <

1,
1− g−1(1−λp)
1− g−1(1−p) = R(λ) ∈ [0, 1]. That is,

1− g−1(1−λp) = R(λ)[1− g−1(1−p)] (14)

with R(1) = 1. Differentiating (14) with respect to p and λ, we then have

λ[g−1]′(1−λp) = R(λ)[g−1]′(1−p)
p[g−1]′(1−λp) = R′(λ)[1− g−1(1−p)]
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Thus λR′(λ) = R′(1)R(λ) and hence

R(λ) = λR
′(1) (15)

When p approaches unity in (14), we have the limit as 1 − g−1(1−λ) =

R(λ). It follows, from (15), g−1(1−λ) = 1−λR′(1) and g(1−λR′(1)) = 1−λ.

Therefore

g(p) = 1− (1−p)
1

R′(1) .

Therefore, under DIA, A′1A
′
2 ‖ A′3A′4 if and only if the distortion function

g satisfies g(p) = 1 − (1−p)γ where γ > 0, and in this case both A1 � A2

and A3 � A4 hold together. The value of α in (13) is chosen such that

A′1A
′
2 ‖ A′3A′4 and hence

1− g−1(1−q)
g−1(1−q)− g−1(1−p) = Slope of A′1A

′
2

= Slope of A′3A
′
4 =

1− g−1(1−λq)
g−1(1−λq)− g−1(1−λp) .

We can then conclude that the distortion function g is of the form g(p) =

1 − (1−p)γ . Note that if the form of the distortion function is g(p) =

1− (1−p)γ with γ > 0, then the function f(p) defined in Section 3 becomes

pγ , and hence the elasticity of f , which is defined as p
f ′(p)

f(p)
, equals to

γ. Conversely, if p
f ′(p)

f(p)
= γ, then f(p) = pγ and g(p) = 1 − (1 − p)γ .

Therefore under DIA, both A1 � A2 and A3 � A4 hold if and only if the

elasticity of the weights function f is a positive constant.

4.2.2. A Closer Look

The common ratio effect example is also regarded as irrational behavior

under IA and EU. However, the inconsistent result holds when the distor-

tion function g satisfies g(p) = 1− (1−p)γ where γ > 0 under DIA (which

is IA when γ = 1). Under RDEU, the paradox can disappear when the

corresponding weights function has an increasing elasticity.

As for the explanation for the Allais paradox, we turn to the unit tri-

angle to explain the common ratio effect by directly using DIA, which is
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illustrated in Figure 6. As we know,

Slope of A′1A
′
2 =

1− g−1(1−q)
g−1(1−q)− g−1(1−p) ;

Slope of A′3A
′
4 =

1− g−1(1−λq)
g−1(1−λq)− g−1(1−λp) .

Define a function h : [0, 1]→ [0, 1] by h(p) = 1− g−1(1−p), then

Slope of A′1A
′
2 =

h(q)

h(p)−h(q)
=

1
h(p)
h(q)−1

;

Slope of A′3A
′
4 =

h(λq)

h(λp)−h(λq)
=

1
h(λp)
h(λq)−1

.

Now we can find the relation between the function f(p) = 1 − g(1−p)
and h(p) = 1 − g−1(1−p) as follows: h(p) = 1 − g−1(1−p) if and only if

g−1(p) = 1 − h(1−p) if and only if p = g−1(g(p)) = 1 − h(1−g(p)) if and

only if 1− p = h(1−g(p)) if and only if h−1(1−p) = 1− g(p) if and only if

h−1(p) = 1− g(1−p) = f(p) if and only if h(f(p)) = p.

Since h(f(p)) = p implies h′(f(p))f ′(p) = 1 and f ′(p) =
1

h′(h−1(p))
, the

elasticity of f at p is

p
f ′(p)

f(p)
= p

1

h−1(p)h′(h−1(p))
=

h(h−1(p))

h−1(p)h′(h−1(p))
=

1

h−1(p)h
′(h−1(p))
h(h−1(p))

which is the inverse of the elasticity of h at h−1(p).

As we know, the elasticity of the weights function f is a positive constant,

p
f ′(p)

f(p)
= γ, if and only if f(p) = pγ if and only if h(p) = p

1
γ if and only

if Slope of A′1A
′
2 = 1

[ pq ]
1
γ −1

= Slope of A′3A
′
4 if and only if A′1A

′
2 ‖ A′3A′4 if

and only if A1 � A2 and A3 � A4. In the right-hand-side of Figure 7 we

use superscript 0 to replace ′ in A′ to denote for this case. As we know,

under RDEU, A1 � A2 and A4 � A3 are compatible if and only if the

elasticity of the weights function f is a positive constant. Does this result

hold under DIA?

[1] The elasticity of the weights function f is increasing if and only if

the elasticity of the weights function h is decreasing if and only if
h(λp)

h(p)
>

h(λq)

h(q)
if and only if

h(λp)

h(λq)
>
h(p)

h(q)
if and only if Slope ofA′1A

′
2 > Slope ofA′3A

′
4.
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FIG. 7. Rationalization of the Common Ratio Effect by the distorted independence
axiom. A0, A1, and A2 correspond to the cases that the elasticity of the weights function
f is constant, increasing, and decreasing, respectively.

Now we can find the relation between the function f(p) = 1−g(1−p) and h(p) = 1−g−1(1−p)
as follows: h(p) = 1−g−1(1−p) if and only if g−1(p) = 1−h(1−p) if and only if p = g−1(g(p)) =

1− h(1−g(p)) if and only if 1− p = h(1−g(p)) if and only if h−1(1−p) = 1− g(p) if and only if

h−1(p) = 1− g(1−p) = f(p) if and only if h(f(p)) = p.

Since h(f(p)) = p implies h′(f(p))f ′(p) = 1 and f ′(p) =
1

h′(h−1(p))
, the elasticity of f at p

is

p
f ′(p)
f(p)

= p
1

h−1(p)h′(h−1(p))
=

h(h−1(p))
h−1(p)h′(h−1(p))

=
1

h−1(p)h
′(h−1(p))
h(h−1(p))

which is the inverse of the elasticity of h at h−1(p).
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Figure 4.7: Rationalization of the Common Ratio Effect by the distorted independence axiom.

A0, A1, and A2 correspond to the cases that the elasticity of the weights function f is constant,

increasing, and decreasing, respectively.

As we know, the elasticity of the weights function f is a positive constant, p
f ′(p)
f(p)

= γ, if and

only if f(p) = pγ if and only if h(p) = p
1
γ if and only if Slope of A′1A

′
2 = 1

[
p
q

] 1
γ −1

= Slope of A′3A
′
4

if and only if A′1A
′
2 ‖ A′3A′4 if and only if A1 � A2 and A3 � A4. In the right-hand-side of Figure

4.7 we use superscript 0 to replace ′ in A′ to denote for this case. As we know, under RDEU,

A1 � A2 and A4 � A3 are compatible if and only if the elasticity of the weights function f is a

positive constant. Does this result hold under DIA?

22

In the right-hand-side of Figure 7 we use superscript 1 to replace ′ in A′.

Thus, the elasticity of the weights function f is increasing if and only if

Slope of A1
1A

1
2 > Slope of A1

3A
1
4. In this case, it is possible that A1 � A2

and A4 � A3 are compatible.

[2] The elasticity of the weights function f is decreasing if and on-

ly if the elasticity of the weights function h is increasing if and only if
h(λp)

h(p)
<
h(λq)

h(q)
if and only if

h(λp)

h(λq)
<
h(p)

h(q)
if and only if Slope of A′1A

′
2 <

Slope of A′3A
′
4. In the right-hand-side of Figure 7 we use superscript 2 to

replace ′ in A′. Thus, the elasticity of the weights function f is decreasing

if and only if Slope of A2
1A

2
2 < Slope of A2

3A
2
4. In this case, A1 � A2 and

A3 � A4 are compatible.

We summarize the above results from the view of DIA as follows.

1. The weights function f satisfies f(p) = pγ where γ > 0 if and only if

A′1A
′
2 ‖ A′3A′4. In this case both A1 � A2 and A3 � A4 hold together.

2. The weights function f is of increasing elasticity if and only if Slope

of A′1A
′
2 > Slope of A′3A

′
4, and it is possible that A1 � A2 and A4 � A3

are compatible.

3. The weights function f is of decreasing elasticity if and only if Slope

of A′1A
′
2 < Slope of A′3A

′
4, then A1 � A2 and A3 � A4 are compatible.

Machina (1987) uses the unit triangle to explain the Allais paradox and

the common ratio effect. In his diagrams, prospects are fixed and form

parallelograms, but indifference curves fan out. In this paper, we examine
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the examples from a different angle. We transform the unit triangle under

the framework of DIA, as in Figures 4 and 7. Here, indifference curves

keep parallel but lines of the compared prospect pairs are fanning in in the

following two cases — [1] the distortion function g is concave for the Allais

paradox and [2] the weights function f is of increasing elasticity for the

common ratio effect. Then the behavioral patterns in these paradoxes may

be rational.

5. CONCLUSIONS AND REMARKS

In this paper, we build the distorted theory under risk, which is al-

so called the RDEU theory (Quiggin 1982, Segal 1989, and Quiggin and

Wakker 1994). We first provide a brief outline of Quiggin’s (1982) RDEU

formula. Following Quiggin’s (1982) assumption that the transformation

of CDFs is a continuous function of the whole probability distribution, we

show, by induction to reduce the dimensions of lotteries, that the RDEU

formula holds over lotteries. Besides, this formula can also be proved for

general random variables. The rank-dependent expected utility on risks is

represented by mathematical expectations of a utility function with respect

to a transformation of probabilities on the set of outcomes.

Then we axiomatize the distorted theory of rank-dependent expected

utility. We notice that the function which distorts decision-makers’ beliefs

is also a CDF. It follows that the distorted CDF is the compound of the

distortion function and the CDF of a risky prospect. From this approach

we construct our DIA, and hence provide the representation theorem of

RDEU by modifying EU (Fishburn 1982 and Yaari 1987).

The RDEU formula can be used to explain the Allais paradox and the

common ratio effect (Segal 1987a, 1989), and even the Ellsberg paradox

(Segal 1987b). While the Allais paradox and the common ratio effect are

inconsistent with EU, they may accord with RDEU. As we know, IA is a

special case of DIA. Consequently, the paradoxes under IA may constitute

rational behaviors under our DIA. In this paper, we transform the unit tri-

angle in Machina (1987) to the framework of DIA, in which the indifference

curves remain parallel but the positions of prospects change. We show that

when the distortion function take specific forms, lines of compared prospec-

t pairs fan in and thus the behavioral pattern in these examples may be

rational.
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APPENDIX A

[Proof of Theorem 1]: We prove the expressions (2)-(3) by induction.

It is very easy to check the cases of N = 1, 2, 3. Supposing the result holds

for N , we want to prove that it also holds for N + 1.
For the case of N + 1, XN+1 = (xN+1

1 , pN+1
1 ; · · · ;xN+1

N+1, p
N+1
N+1) with∑N+1

n=1 p
N+1
n = 1. Then

RDEU(XN+1) =

N+1∑
n=1

HN+1
n (pN+1

1 , · · · , pN+1
N+1)U(xN+1

n )

and
∑N+1
n=1 H

N+1
n (pN+1

1 , · · · , pN+1
N+1) = 1.

As xN+1
1 approaches xN+1

2 , U(xN+1
1 ) approaches U(xN+1

2 ). ThenRDEU(XN+1)

approachesRDEU(XN ) when xN+1
2 = xN1 , xN+1

n = xNn−1 for n = 3, · · · , N+

1, and pN+1
n = pNn−1 for n = 3, · · · , N + 1 (in this case, pN+1

1 + pN+1
2 =

pN1 ). In the limit, xN+1
1 = xN+1

2 , XN+1 = XN and RDEU(XN+1) =

RDEU(XN ). Thus we have

N∑

n=1

HN
n (pN1 , · · · , pNN )U(xNn )

= [HN+1
1 (pN+1

1 , pN+1
2 , pN2 , · · · , pNN ) +HN+1

2 (pN+1
1 , pN+1

2 , pN2 , · · · , pNN )]U(xN1 )

+

N+1∑

n=3

HN+1
n (pN+1

1 , pN+1
2 , pN2 , · · · , pNN )U(xNn−1).

Since xN1 , · · · , xNN are chosen arbitrarily and (HN+1
1 , · · · , HN+1

N+1 ) is inde-

pendent of (xN1 , · · ·, xNN ), the coefficients on U(xN1 ), · · · , U(xN3 ) must be
equal. Hence,

HN
1 (pN1 , · · · , pNN ) = HN+1

1 (pN+1
1 , pN+1

2 , pN2 , · · · , pNN ) +HN+1
2 (pN+1

1 , pN+1
2 , pN2 , · · · , pNN )

HN
n (pN1 , · · · , pNN ) = HN+1

n+1 (pN+1
1 , pN+1

2 , pN2 , · · · , pNN ) for n = 2, · · · , N. (A.1)

From (1) and (A.1) we have, for n = 2, · · · , N ,

HN+1
n+1 (pN+1

1 , · · · , pN+1
N+1) = HN

n (pN1 , · · · , pNN )

= g

(
n∑

n′=1

pNn′

)
− g

(
n−1∑
n′=1

pNn′

)
= g

(
n+1∑
n′=1

pN+1
n′

)
− g

(
n∑

n′=1

pN+1
n′

)
.(A.2)

We next consider the cases of k = 2, · · · , N − 1. As xN+1
k approaches

xN+1
k+1 , U(xN+1

k ) approaches U(xN+1
k+1 ). Then RDEU(XN+1) approaches

RDEU(XN ) when xN+1
n = xNn for n = 1, · · · , k − 1, xN+1

k+1 = xNk , xN+1
n =

xNn−1 for n = k + 2, · · · , N + 1, pN+1
n = pNn for n = 1, · · · , k − 1, and
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pN+1
n = pNn−1 for n = k+2, · · · , N+1 (in this case, pN+1

k +pN+1
k+1 = pNk ). In

the limit, xN+1
k = xN+1

k+1 , XN+1 = XN andRDEU(XN+1) = RDEU(XN ),

so that

N∑

n=1

HN
n (pN1 , · · · , pNN )U(xNn )

=

k−1∑

n=1

HN+1
n (pN1 , · · · , pNk−1, pN+1

k , pN+1
k+1 , p

N
k+1, · · · , pNN )U(xNn )

+[HN+1
k (pN1 , · · · , pNk−1, pN+1

k , pN+1
k+1 , p

N
k+1, · · · , pNN )

+HN+1
k+1 (pN1 , · · · , pNk−1, pN+1

k , pN+1
k+1 , p

N
k+1, · · · , pNN )]U(xNk )

+

N+1∑

n=k+2

HN+1
n (pN1 , · · · , pNk−1, pN+1

k , pN+1
k+1 , p

N
k+1, · · · , pNN )U(xNn−1).

Then

HN
n (pN1 , · · · , pNN ) = HN+1

n (pN1 , · · · , pNk−1, p
N+1
k , pN+1

k+1 , p
N
k+1, · · · , pNN ), (A.3)

n = 1, · · · , k−1
HN

k (pN1 , · · · , pNN ) = HN+1
k (pN1 , · · · , pNk−1, p

N+1
k , pN+1

k+1 , p
N
k+1, · · · , pNN )

+HN+1
k+1 (pN1 , · · · , pNk−1, p

N+1
k , pN+1

k+1 , p
N
k+1, · · · , pNN )

HN
n (pN1 , · · · , pNN ) = HN+1

n+1 (pN1 , · · · , pNk−1, p
N+1
k , pN+1

k+1 , p
N
k+1, · · · , pNN ), (A.4)

n = k+1, · · ·, N

From (2) and (A.3) we have

HN+1
1 (pN+1

1 , · · · , pN+1
N+1) = HN

1 (pN1 , · · · , pNN ) = g(pN1 ) = g(pN+1
1 ). (A.5)

From (3) and (A.3) we have, for n = 2, · · · , k − 1,

HN+1
n (pN+1

1 , · · · , pN+1
N+1) = HN

n (pN1 , · · · , pNN )

= g

(
n∑

n′=1

pNn′

)
− g

(
n−1∑
n′=1

pNn′

)
= g

(
n∑

n′=1

pN+1
n′

)
− g

(
n−1∑
n′=1

pN+1
n′

)
.(A.6)

From (3) and (A.4) we have, for n = k + 1, · · · , N ,

HN+1
n+1 (pN+1

1 , · · · , pN+1
N+1) = HN

n (pN1 , · · · , pNN )

= g

(
n∑

n′=1

pNn′

)
− g

(
n−1∑
n′=1

pNn′

)
= g

(
n+1∑
n′=1

pN+1
n′

)
− g

(
n∑

n′=1

pN+1
n′

)
.(A.7)

As xN+1
N approaches xN+1

N+1, U(xN+1
N ) approaches U(xN+1

N+1). ThenRDEU(XN+1)

approaches RDEU(XN ) when xN+1
n = xNn for n = 1, · · · , N − 1, xN+1

N+1 =
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xNN , and pN+1
n = pNn for n = 1, · · · , N − 1 (in this case, pN+1

N + pN+1
N+1 =

pNN ). In the limit, xN+1
N = xN+1

N+1, XN+1 = XN and RDEU(XN+1) =

RDEU(XN ), so that

N∑
n=1

HN
n (pN1 , · · · , pNN )U(xNn ) =

N−1∑
n=1

HN+1
n (pN1 , · · · , pNN−1, p

N+1
N , pN+1

N+1)U(xNn )

+[HN+1
N (pN1 , · · · , pNN−1, p

N+1
N , pN+1

N+1) +HN+1
N+1 (p

N
1 , · · · , pNN−1, p

N+1
N , pN+1

N+1)]U(xNN ).

Then

HN
n (pN1 , · · · , pNN ) = HN+1

n (pN1 , · · · , pNN−1, p
N+1
N , pN+1

N+1) (A.8)

for 1 = 2, · · · , N − 1

HN
N (pN1 , · · · , pNN ) = HN+1

N (pN1 , · · · , pNN−1, p
N+1
N , pN+1

N+1)

+ HN+1
N+1 (p

N
1 , · · · , pNN−1, p

N+1
N , pN+1

N+1)

From (2) and (A.8) we have

HN+1
1 (pN+1

1 , · · · , pN+1
N+1) = HN

1 (pN1 , · · · , pNN ) = g(pN1 ) = g(pN+1
1 ). (A.9)

From (3) and (A.8) we have, for n = 2, · · · , N − 1,

HN+1
n (pN+1

1 , · · · , pN+1
N+1) = HN

n (pN1 , · · · , pNN ) (A.10)

= g

(
n∑

n′=1

pNn′

)
− g

(
n−1∑
n′=1

pNn′

)
= g

(
n∑

n′=1

pN+1
n′

)
− g

(
n−1∑
n′=1

pN+1
n′

)
.

Summarizing (A.2), (A.5), (A.6), (A.7), (A.9) and (A.10), we have

HN+1
1 (pN+1

1 , · · · , pN+1
N+1) = g(pN+1

1 )

HN+1
n (pN+1

1 , · · · , pN+1
N+1) = g

(
n∑

n′=1

pN+1
n′

)
− g

(
n−1∑
n′=1

pN+1
n′

)
, for n = 2, · · · , N + 1.

[Proof of Theorem 2]: For X ∈ L , its CDF is FX on [m,M ]. Then FX
can be produced from the limit of a non-decreasing sequence of CDFs of
discrete random variables. For any natural number N = 1, 2, · · · we define
a function FN : [m,M ]→ [0, 1] as

FN (x) =

{
FX(xk), if x ∈ [xk, xk+1) for k = 0, 1, · · · , 2N − 1

1, if x =M

where xk = m +
k

2N
(M−m) for k = 0, 1, · · · , 2N (hence x0 = m and

x2N = M). That is to say, the sequence {xk : k = 1, · · · , 2N−1} divides
the interval [m,M) into 2N equal-length small intervals [xk, xk+1) for k =
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0, 1, · · · , 2N−2 and [x2N−1, x2N ]. Then m = x0 < x1 < · · · < x2N−1 <

x2N = M and [m,M) =
∑2N−2
k=0 [xk, xk+1) + [x2N−1, x2N ] where the sum of

sets means union of the disjoint sets. Thus FN is the CDF of the discrete

random variable X2N+1 = (x0, FX(x0);x1, FX(x1)−FX(x0); · · · ;x2N−1,
FX(x2N−1)−FX(x2N−2);x2N , FX(x2N )−FX(x2N−1)). By construction,

lim
N→∞

FN (x) = FX(x) for x ∈ {xk : k = 0, 1, · · · , 2N and N = 1, 2, · · · }.

The set {xk : k = 0, 1, · · · , 2N and N = 1, 2, · · · } is dense in [m,M ], then

lim
N→∞

FN (x) = FX(x) for x ∈ [m,M ].

That is, the non-decreasing sequence of CDFs {FN : N = 1, 2, · · · }
converges to FX . It follows that, from the continuity of function g,

lim
N→∞

g(FN (x)) = g(FX(x)) for x ∈ [m,M ].

That is, the non-decreasing sequence of CDFs {g◦FN : N = 1, 2, · · · }
converges to g◦FX .

Since U is a continuous and increasing von Neumann - Morgenstern
utility function on [m,M ], then we have, by Helly Theorem in Chow and
Ticher (1988),

lim
N→∞

∫
[m,M ]

U(x)dg(FN (x)) =

∫
[m,M ]

U(x)dg(FX(x)).

[Proof of Proposition 2]: The CDF of the random variable FX(X) is,
for p ∈ [0, 1],

P{FX(X) ≤ p} = P{X ≤ F−1
X (p)} = FX(F−1

X (p)) = p.

Therefore FX(X) follows the uniform distribution on [0, 1].
If the random variable θ follows the uniform distribution on [0, 1], for

any CDF F ,

P{F−1(θ) ≤ x} = P{θ ≤ F (x)} = F (x).

Therefore F−1(θ) follows the CDF F .

[Proof of Theorem 4]: Define a binary relation �∗ on the family F of
CDFs as follows:

F1 �∗ F2 if and only if g ◦ F1 � g ◦ F2

for all F1 and F2 in F . Clearly, if X1 and X2 are random variables in L ,
then

X1 �∗ X2 if and only if g ◦ FX1 � g ◦ FX2 .
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Checking Axioms A1 - A4, we find that they hold for %∗ on F if and only

if they hold for % on F ◦. Axioms A1, A2, and A4 are straightforward.

Now we check Axiom A3 as follows.
Let g◦F and g◦F ′ belong to F ◦. Since g satisfies Lipschitz condition,

then there exists a positive number K1 > 0 such that, for p1 and p2 in
[0, 1], |g(p1)− g(p2)| ≤ K1|p1 − p2|.

‖g◦F − g◦F ′‖ =
∫
[m,M ]

|[g◦F ](x)− [g◦F ′](x)|dx =

∫
[m,M ]

|g(F (x))− g(F ′(x))|dx

≤
∫
[m,M ]

K1|F (x)− F ′(x)|dx = K1

∫
[m,M ]

|F (x)− F ′(x)|dx = K1‖F − F ′‖.

Let F and F ′ belong to F . Since g−1 satisfies Lipschitz condition, then
there exists a positive number K2 > 0 such that, for p1 and p2 in [0, 1],
|g−1(p1)− g−1(p2)| ≤ K2|p1 − p2|.

‖F − F ′‖ =
∫
[m,M ]

|F (x)− F ′(x)|dx =

∫
[m,M ]

|g−1(g(F (x)))− g−1(g(F ′(x)))|dx

≤
∫
[m,M ]

K2|g(F (x))− g(F ′(x))|dx = K2

∫
[m,M ]

|[g◦F ](x)− [g◦F ′](x)|dx

= K2‖g◦F − g◦F ′‖.

Then the L1-norms are equivalent on F and F ◦.

Furthermore, �∗ satisfies Axiom A5EU if and only if � satisfies Axiom

A5.

If F1, F2 and F belong to F and α is a real number satisfying 0 < α < 1,

and F1 �∗ F2, then g◦F1 � g◦F2. Since g◦F1 , g◦F2 and g◦F belong to

F ◦, then, by DIA A5, α[g◦F1]⊕(1−α)[g◦F ] � α[g◦F2]⊕(1−α)[g◦F ]. That

is, g◦[αF1 + (1−α)F ] � g◦[αF2 + (1−α)F ] from the definition of mixture

operation. Hence αF1 + (1−α)F �∗ αF2 + (1−α)F .

Conversely, if g◦F1 , g◦F2 and g◦F belong to F ◦ and α is a real number

satisfying 0 < α < 1, and g◦F1 � g◦F2, then F1 �∗ F2. It follows that, by

IA A5EU, αF1 + (1−α)F �∗ αF2 + (1−α)F . That is, g◦[αF1 + (1−α)F ] �
g◦[αF2 + (1−α)F ]. Thus α[g◦F1] ⊕ (1−α)[g◦F ] � α[g◦F2] ⊕ (1−α)[g◦F ]

from the definition of mixture operation.
Hence, from Theorem 3, it follows that � satisfies Axioms A1 - A5 if and

only if �∗ has the appropriate expected utility representation. In other
words, � satisfies Axioms A1 - A5 if and only if there exists a continuous
and non-decreasing real function u, defined on [m,M ], such that, for all
X1 and X2 belonging to L ,

X1 � X2 ⇐⇒ E[u(F−1
X1

(ξ))] > E[u(F−1
X2

(ξ))].
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Let H be any member of F . Then, the equation

E[u(F−1(ξ))] =

∫

[m,M ]

u(x)dFF−1(ξ)(x)

=

∫

[m,M ]

u(x)d[g◦F ](x) =

∫

[m,M ]

u(x)dg(F (x))

holds, and this proves the first part of the theorem.
Now, applying the second part of Theorem 3 to �∗, we find that u can

be selected so as to satisfy the preference equation

(m, 1− u(x);M,u(x)) ∼∗ (x, 1)

for m ≤ x ≤ M , which produces (7). This completes the proof of the

theorem.
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