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I examine the welfare value of bond return forecasts in timing the market
under a limited data trading environment. Using monthly US data, I estimate
the utility benefit of each return forecast and test its significance through a
structural approach of forecast evaluation. I find that predictor based market
timing with finite historical data creates occasional but large portfolio loss.
The benchmark welfare level under no-predictability view is hard to beat by
parametric or non-parametric strategy. However, a Bayesian shrinkage strat-
egy with no-predictability prior leads to significant welfare gain at certain
range of prior confidence.

Key Words: Bond return predictability; Limited information; Structural forecast

evaluation.

JEL Classification Numbers: C12, E47, G11, G17.

1. INTRODUCTION

A vast literature, such as Fama and Bliss (1987), Cochrane and Piazzesi
(2005), Ludvigson and Ng (2009), has documented that expected returns
in the US Treasury bond market vary over time and are predictable by the
shape of the yield curve and macroeconomic fundamentals. The variation
in the expected return is also economically large. Taking the Cochrane
Piazzesi factor, the measured conditional expected annual-excess-return of
a 5-year bond varies over time with a standard deviation of around 2.5%,
while its unconditional mean is less than 1%.

This essay examines whether such return predictability can be exploited
by a bond investor facing finite history of data to improve trading decision.
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In theory, a high magnitude of predictability calls for aggressive market
timing, that is, the optimal portfolio weight should depend on the level of
return predictor. In practice, additional obstacles exist. First, investors
only have limited information on the relevant predictive relation. For ex-
ample, although they understand that the return predictor at hand is cor-
related with future return, the true conditional distribution of future return
given current predictor value is unknown. The return forecasting process
typically relies on either a parametric or non-parametric return model,
which is inevitably mis-specified.1 On top of that, either a parametric or
non-parametric return model needs to be estimated. As investors only face
a limited data history, estimation uncertainty becomes a concern. Sec-
ondly, given certain estimated and mis-specified return forecasting model,
there is an extra portfolio decision based on it. The errors in estimation
or model specification would be further transformed during some portfolio
optimization processes and their ultimate impact to investor welfare would
be unknown.

Given the above-mentioned concerns, the objective of this essay is to
quantify the portfolio value of bond return forecasts under a limited in-
formation constraint. To this end, I consider a finite data bond trading
scenario. I assume that, under this scenario, a CRRA bond investor has
access to a finite history of data on bond return predictor values and sub-
sequent realized bond excess returns. These historical data are used by
investors to infer the relevant predictive relation. I then adopt a decision
theory approach to view each allocation strategy that exploits bond return
predictability as a function of historical data, or in other words, an estima-
tor. That portfolio estimator hence maps any observed data in investor’s
information set towards a bond portfolio weight scheme. The finite sample
properties of this portfolio estimator thus indicates the welfare value of
return predictor under limited data.

Methodologically, the contribution of my approach is to propose a con-
ceptually new means of assessing return predictors. Traditional works fo-
cus on raw predictability, i.e., whether the return predictor helps to reduce
mean squared forecast error (MSFE). In contrast, I shift attention to the
welfare value of each predictor, an object of ultimate interest to investors.
I argue that although the traditional approach helps to understand the un-
derlying data generating process, it does not provide sufficient information
to guide trading decisions. For instance, one predictor could forecast the
correct sign of excess return in each period while completely missing the
magnitude. In that case, the traditional criteria of MSFE would not favor
that signal despite the fact that it is obviously useful for trading. Unlike

1This can be due to inadequately modeled dynamics, incorrect functional form or any
combination of these.
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MSFE, the utility metric accounts for the consequences any forecast error
would have on the portfolio. Under this metric, a small forecast error is
more valuable when the sign forecast is correct and the magnitude of fore-
cast is large. Secondly, traditional works test on the population level of
mean squared forecast error assuming the true value of slope coefficients
in predictive regression are known. Yet, my work recognizes the fact that
return forecasts and the subsequent portfolio decisions are both conducted
with limited data. Hence, the focus here is on the forecast errors when rel-
evant parameters are estimated and how they translate into portfolio risks.
Note that the predictive relation, even if it does exist in the population
level, needs to be specified and estimated precisely enough within a finite
sample in order to achieve welfare gain.

Using monthly US data, I estimate and test the significance to welfare
gain of a list of bond return predictors from either yield curve, macro funda-
mental or technical analysis in the aforementioned limited data framework.
First, I find that linear parametric strategies, driven by any of the predic-
tors considered above, create large losses occasionally, despite positive gains
in most states. As a result, the corresponding welfare estimates are infe-
rior to a simple benchmark rule which ignores predictability. Second, non-
parametric policies, advocated by Brandt (1999) to account for potential
nonlinearity in the predictive relation, exhibit similar performance insta-
bility and fail to beat the benchmark. Third, such performance instability
is not specific to any business cycle or market volatility regime and hence,
it is hard to forecast in advance. Fourth, shrinkage strategies, suggested in
Connor (1997) and Brandt (2009) and implemented through Bayesian pre-
dictive regressions with no-predictability prior, lead to significant welfare
improvement when the degree of prior confidence is high.

The above findings suggest that errors in forecasting model estimation
and specification can indeed create large welfare loss. Specifically, when
predictive relations are subject to un-modeled and hence un-expected in-
stability, forecast errors would be magnified under a market timing decision
that is made based on the historical data observed. In addition, the mar-
ket timing policies, either parametric or non-parametric, are more complex
than the benchmark rule, which ignores predictors. Their estimations are
hence more sensitive to the realization of historical data observed. This
additional estimation uncertainty also translates into extra volatility in re-
alized returns and hence lowers welfare. The shrinkage policy represents an
attempt to reduce the portfolio risks due to forecasting model estimation
and mis-specification. By taming down estimated return forecast, bond
predictability is only partially exploited under this policy. Our results
indicate that at a high shrinkage, the information value gained from incor-
porating predictors outweighs the welfare loss due to mis-specification and
estimation.
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In assessing strategy performance, my estimation of utility expectation,
given a single path of realized US data, rests upon a series of “pseudo”
repeated experiments generated by an out-of-sample portfolio construction
exercise.2 In particular, at the end of each month, our investor is asked to
make an allocation decision based only on the most recent data. Meanwhile,
a rolling window scheme is imposed, so that the same size of historical data
or information set is available at each portfolio decision experiment. Thus,
the resulting average realized utility serves as a consistent estimator of the
(unconditional) welfare measure averaged over time.

In testing the significance of expected-utility difference, I build the infer-
ence procedures upon those established in the forecast evaluation literature,
Diebold and Mariano (1995), West (1996), Giacomini and White (2006).
This stream of works has traditionally evaluated point forecasts by sta-
tistical measures of accuracy, such as the mean squared forecast error or
predictive likelihood. However, in our context, the evaluation object is a
portfolio estimator. Thus, forecast evaluation is addressed in a structural
way with a portfolio optimization process embedded and the evaluation
metric modified to be the expected utility.

Speaking to the bond return forecasting literature, my work is most
closely related to Thornton and Valente (2012) but complements their anal-
ysis of out-of-sample bond return predictability in two dimensions. First,
in examining the economic significance of predictability, Thornton and Va-
lente (2012) fix a mean variance rule and then evaluate the information
value of yield curve in shaping bond portfolios. In contrast, I argue that
the portfolio value of a return predictor also depends on the way it is ex-
ploited. Hence, my work focuses on a joint evaluation, where for each return
predictor, a bunch of policy functions such as parametric or non-parametric
or Bayes rules are included in measuring welfare value. The return predic-
tors examined also go beyond those based on the yield curve and contain
macro and technical analysis driven factors. Secondly, while out-of-sample
analysis is conducted in Thornton and Valente (2012), inference is still on
a population level statement of the forecast errors, assuming the values of
parameters are known. Nonetheless, my work relies on a formal estima-
tion and inference procedure that validates the finite sample properties of
return predictors against estimation and mis-specification risks. Since in-
vestors only face limited data in reality, this finite sample approach seems
to be more relevant for portfolio management.

The rest of the essay is structured as follows. 2 lays out the limited data
bond investment framework. There, I also describe the utility metric along
with the associated estimation and inference procedure. 3 conducts em-

2While investors only have access to limited data, econometricians could use the whole
time series (future data) in performance evaluation.
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pirical analyses in the US Treasury bond market and discusses the results.
Robustness checks are illustrated in 4, and the last chapter concludes.

2. INVESTMENT FRAMEWORK

This lays out the investment decision framework. I consider a single
period bond allocation problem in which the excess return of long term
bond is predictable. However, the true state/forecasting variable as well
as its joint distribution with return are unknown and have to be estimated
with a finite history of data. I describe respectively the allocation rule, its
performance measure, the estimation of performance as well as the relevant
inference procedure.

2.1. Bond allocation rule

Consider a Treasury bond investor who allocates his current wealth Wt

between a short term 1 -year discount bond and a longer term n-year one.
The investment horizon is τ so the position is held until t + τ and then
liquidated. With τ equal to a year, the 1 -year bond matures at face value
and is risk-less in nominal terms. While, the n-year bond will be sold as an
(n-1)-year bond whose price is unknown beforehand. The long-term bond’s

log return r
(n)
t+τ is therefore random. Its expected value in excess of the log

risk-less rate rft = r
(1)
t+τ is referred to as bond risk premium Et[r

(n)
t+τ − r

f
t ].

The investor’s preference admits an expected utility representation with
a CRRA function defined over the terminal wealth Wt+τ . At time t, the
investor puts a fraction αt of wealth into the n-year bond based on the
conditional density of return and his risk tolerance 1/γ. The allocation
decision is thus a directional / market-timing bet that collects risk premium
and does not involve any cross-sectional arbitrage.

In making allocation decision, the true conditional density is unknown,

but a finite history (sample realization) of return ~rt = {r(n)τ , . . . , r
(n)
t } and

state variables ~zt = {z0, . . . , zt} is available. Following bond literature,
zt include both yield curve and macroeconomic fundamental data which
form the basis of various return forecasting factors. This historical data,
of length t and denoted as φt = {~rt, ~zt}, may be used to estimate the
desirable forecasting model and the corresponding portfolio policy. Thus,
the allocation choice αt in this finite history setting is data dependent,
and the rule α(.) can be viewed as a generic estimator formally defined as
follows:

Definition 2.1. An allocation rule, or portfolio strategy, α(.) is a
mapping from realizations of historical data in the estimation window to
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the set of allocation positions.

α(φt) : Φt → A, (1)

where Φt is the range of historical (sample) data φt and A = (−∞,+∞) is
the admissible set of portfolio weight on long term bond.

2.2. Measurement of performance

The performance of each allocation rule α(.) is assessed based on the
expected utility it generates. Given a history of φt, the realized utility is
derived as

U(α(φt), r
(n)
t+τ ) =

(α(φt)e
r
(n)
t+τ + (1− α(φt))e

rft )1−γ

1− γ
, (2)

where dependence on rft is suppressed since it is observed at t and thus is
an element of φt. This realized utility is a random variable as both φt and

r
(n)
t+τ are random. Accordingly, it should be averaged across realizations

of both historical data and future return, as suggested in the following
(unconditional) notion of performance measure:

Definition 2.2. An unconditional welfare measure of the allocation
rule α(.) is the unconditional expectation of realized utility:

EU [α(.)] = Ef
φt,r

(n)
t+τ

[U(α(φt), r
(n)
t+τ )], (3)

where f
φt,r

(n)
t+τ

is the joint density of historical data and forecasting period

return.

By integrating over historical data, the above metric explicitly accounts
for the effect of estimation uncertainty on portfolio performance. Mean-
while, it reflects mis-specification risk as modeled forecasting relations do
not necessarily coincide with the true one. These two ingredients help us
to focus on the practical, or limited data usefulness of any portfolio strat-
egy. Besides, this unconditional welfare measure can be further modified
to examine potential heterogeneity in allocation rule performance. In par-
ticular, we will consider utility expectations that are conditional on certain
regime of the business cycle or market volatility measured by an economic
state variable st,

EU [α(.)|st = s] = Ef
φt,r

(n)
t+τ
|st=s

[U(α(φt), r
(n)
t+τ )], (4)
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where f
φt,r

(n)
t+τ |st=s

is the joint density of historical data and future return

conditional on current economic state being s. The regime s, for example,
can be a low / high unemployment episode, sLowUnemp / sHighUnemp, if
the contemporary unemployment rate is below / above its average level, or
a high / low turbulence episode, shvol / slvol, if past year’s realized bond
market volatility is greater / less than its mean.

2.3. Estimation of welfare metric

Our welfare measure, either unconditional or conditional, is a frequen-
tist notion of average realized utility achieved over repeated samples drawn
from the true distribution. However, in estimating this quantity, only one
single path of data is available. To overcome this issue, I rely on a se-
quence of “pseudo” repeated experiments generated by an out-of-sample
portfolio construction exercise. Specifically, let T denote the total number
of observations available to the econometrician and t be the number of ob-
servations accessible to the investor (in his portfolio estimation window).
Thus, m = T − t − τ + 1 would represent the number of out-of-sample
periods. At each time j, t ≤ j < t+m, our investor is asked to make allo-
cation decision based only on the historical data within [j − t + 1, j], i.e.,
rolling window scheme. The rationale of using rolling window rather than
the expanding one is that: in quantifying limited data value, our allocation
rule α(φt) and performance measure are set to be history size specific. Ac-
cordingly, the length of data available to investor at each portfolio decision
experiment needs to stay the same.

Based on the above argument, an estimator of the (unconditional) welfare
can be the out-of-sample average of realized utility, expressed as:

ÊU [α(.)] =
1

m

T−τ∑
j=t

U(α(φj), r
(n)
j+τ ), (5)

where φj stands for the sample data between [j − t + 1, j]. Assume that
the whole time series follows certain mixing property and denote that
the population level of utility expectation at period j to be EUj [α(.)],

ÊU [α(.)] − 1
m

∑T−τ
j=t EUj [α(.)] will converge almost surely to zero as m

goes to infinity. (See the strong law of large numbers for mixing process
in White (1984) Corollary 3.48 p.49)3 Here, stationarity is not required,
hence the whole time series can be characterized by structural shifts at un-
known date. This assumption of data heterogeneity is more realistic than
the assumption of stationarity. It further justifies the use of rolling window
scheme since local approximation may be less biased in cases of instability.

3When data is stationary, unconditional expected utility EUj [α(.)] = EU [α(.)] is the

same across time, so ÊU [α(.)] will converge to the constant EU [α(.)].
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The conditional notion of welfare can be estimated in a similar way,
except that averaging is now only over portfolio exercises with the same
economic regime. Denote sj to be the level / regime of certain economic
state at allocation time j, the performance of α(.) conditional on regime s
is then estimated as:

ÊU [α(.)|s] =
1

ms

T−τ∑
j=t

U(α(φj), r
(n)
j+τ )I(sj = s), (6)

with I(.) being the indicator function and ms being the number of ob-
servations with regime s. Finally, all welfare estimates, either uncon-
ditional or conditional, are translated into certainty equivalent returns,
ĈE[(α(.))] = U−1(ÊU [α(.)]), for ease of exposition.

2.4. Inference on utility benefit

Our performance estimate of any allocation rule α(.) is benchmarked
against that of a simple strategy which ignores predictability. In particular,
the benchmark strategy, denoted by α0(.), does not have access to past
values of return predictors ~zt and can only map past realization of returns
into portfolio position: α0(φt\~zt) = α0(~rt). The difference in estimated
welfare between an allocation rule that uses the predictors and a benchmark
that discards them, ÊU [α(.)]− ÊU [α0(.)], thus reflects the portfolio value

of relevant return predictors. However, ÊU is only a point estimate of the
true expected utility. Hence, to account for the sampling variability in ÊU ,
a formal inference procedure is needed.
Unconditional inference

For unconditional inference, the null hypothesis we are interested in is
that, on average, market timing does not generate any expected utility
difference relative to the benchmark:

H0 : E[U(α(φj), r
(n)
j+τ )− U(α0(~rj), r

(n)
j+τ )] = 0, ∀j = t, ..., T − τ. (7)

Note that, expectation here is taken with respect to all possible sample
paths of the entire stochastic process {rt+τ , zt}T−τt=0 .

The alternative to H0 is specified in a global way, as distribution of
sample data and return are non-identical over time. Denote ∆Uj,j+τ =

U(α(φj), r
(n)
j+τ )− U(α0(~rj), r

(n)
j+τ ) and let ∆U t,m = 1

m

∑T−τ
j=t ∆Uj,j+τ ,

HA : E[|∆U t,m|] ≥ δ > 0, for small δ and all m sufficiently large. (8)

The testing procedure borrows from those developed in the forecast eval-
uation literature (e.g. Diebold and Mariano (1995), West (1996), Clark and
McCracken (2001), Giacomini and White (2006)). This stream of research



MARKET TIMING UNDER LIMITED INFORMATION 299

has traditionally focused on equal forecast accuracy between two compet-
ing forecasts, in which the objects of interest are typically quadratic loss
(squared error), directional accuracy, or predictive log-likelihood. However,
in our framework, the primary purpose of return forecast is to make alloca-
tion decision. Accordingly, forecast evaluation is addressed in a structural
way with the portfolio optimization process embedded. The relevant loss
function is the negative of realized utility and can no longer be expressed
as a function of forecast errors.

While conceptually distinct, the asymptotic results established in ex-
isting literature can still be applied. The test is based on the following
Wald-type statistic:

Tt,m = m(∆U t,m)Ω̂−1m (∆U t,m), (9)

where Ω̂m is a suitable HAC estimator of the asymptotic variance Ωm =
var[
√
m∆U t,m].

A level α test rejects the null of equal performance whenever Tt,m >
χ2
1,1−α, where χ2

1,1−α is the 1−α quantile of χ2
1 distribution. The underlying

justification of such test follows central limit theorem for mixing process
stated in Wooldridge and White (1988) and other standard asymptotic
arguments in White (1984) and Giacomini and White (2006).
Conditional inference

Whereas the above analysis focused on the unconditional value of market-
timing, conditional inference tests for expected utility difference conditional
on a particular economic regime. The null hypothesis considered now is:

Hc
0 : E[∆Uj,j+τ |sj = s] = 0, ∀j = t, ..., T − τ, (10)

with s being certain business cycle or market volatility regime. As men-
tioned above, I consider current economy being at a low / high unemploy-
ment episode, sLowUnemp / sHighUnemp, if the contemporary unemploy-
ment rate is below / above its average level, and at a high / low turbulence
regime, shvol / slvol, if past year’s realized bond market volatility is greater
/ less than its mean. Those conditioning instruments will help us to ex-
amine whether relative performance of market timing is uniform across the
business cycle or turbulence dependent.

Fixing a regime s, the testing procedure relies on the same Wald-type
statistic as in the unconditional test except that it uses only samples with
sj = s. As before, under certain regularity conditions on the mixing co-
efficients (c.f., White (1984); Giacomini and White (2006)), such test has
correct size and is consistent against the alternative of Hc

A : E[ |∆U t,mc | |
s] ≥ δ > 0, where U t,mc is now the average of utility realizations conditional
on the state s.
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3. EMPIRICAL ANALYSIS

Using framework developed in the previous, I now look into the perfor-
mance of bond market timing empirically. I first describe the data used, the
return predictors considered and the types of portfolio policies entertained.
I then present the empirical findings and discuss their implications.

3.1. Data and utility assumption

I use monthly data on US Treasury bond and macroeconomic funda-
mentals. Bond prices are obtained from Fama-Bliss data set in Center
for Research in Security Prices (CRSP) and contain observations of zero
coupon (discount) bonds with maturity one to five years. Macro funda-
mental data consists of a balanced panel of 135 economic series. Such data
set is originally collected in Stock and Watson (2002) and Stock and Wat-
son (2005), later expanded by Ludvigson and Ng (2009, 2011), McCracken
and Ng (2016), and available on FRED database. The spanning period
considered for both yield curve and macroeconomics data starts from Jan
1964 and ends at Dec 2014.

Regarding primitive on the CRRA preference, it is common practice in
the portfolio allocation literature to consider relative risk aversion γ ranging
from 5 to 10, but a higher value of γ = 20 are also entertained when gauging
the effect of varying γ (See for instance, Barberis (2000)).4 Following this
tradition, we pick γ = 10 for most of our portfolio allocation exercises and
then change this risk aversion level at 5, 15 and 20 as robustness checks.
While the main conclusions are robust to each γ, my analysis shows that
a low value of risk aversion at 5 would induces highly levered positions
for certain predictors considered and lead to ex-post bankruptcy at some
states.

3.2. Implementing allocation rules

Recall that, since an allocation rule is defined as a function of sample
data φt, the size of investor’s information set need to be pre-specified. I
assume that investors always face a historical data of 15 years length, i.e.
φt include 180 monthly observations. Then based on this 15 year rolling
window scheme, I describe on how to construct various return forecasting
factors and how to estimate the associated policies using available sample
on bond prices and macroeconomic series.

4Decision theory literature and experimental economists have shown some evidence
that individual’s risk aversion level when making lottery choices should not exceed a
number of 5. We point out here that a portfolio manager operating in the financial
market may have a different risk appetite. In fact, according to Figure 1 in van Bins-
bergen et al. (2012) which estimates the cross sectional distribution of US mutual fund
managers’ risk appetite, the density of risk aversion peaks at 10 to 25 and is skewed to
the right.
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3.2.1. Return predictors construction

I construct major return predictors identified in the bond forecasting

literature. Those factors are either directly observed or themselves esti-

mated through historical data. I classify them into three categories: those

based on yield/forward curve; on macro fundamental; or on bond market

technical analysis.

Yield/forward curve driven factors:

The first factor I consider is the Fama-Bliss (FB) forward spread. I

calculate log forward rate at time t for loans between t + n − 1 and t + n

as: f
(n)
t = p

(n−1)
t − p(n)t , n = 1, ..., 5, where p

(n)
t is the log price at time t

of the n-year discount bond. I then record the n-year forward spread to

be FB
(n)
t = f

(n)
t − f (1)t . As documented in Fama and Bliss (1987), this

factor forecast annual excess return of the n-year bond, which we label as

rx
(n)
t+1 = r

(n)
t+1 − r

f
t = p

(n−1)
t+1 − p(n)t + p

(1)
t .

The second predictor I study is the Cochrane-Piazzesi (CP) factor. While

the FB
(n)
t predictor is maturity dependent, Cochrane and Piazzesi (2005)

suggests that a single factor summarizes bond premium across maturity.

This single return-forecasting factor is estimated through a (first stage)

predictive regression of average excess return on the whole forward curve.

Specifically, let rxt+1 = 1
4

∑5
n=2 rx

(n)
t+1 be the average (across maturity)

annual excess return, CP factor is formed as the fitted value from:

rxt+1 = γ0 + γ1f
(1)
t + γ2f

(2)
t + . . .+ γ5f

(5)
t + εt+1. (11)

The regression uses only data on bond prices within the information set φt,

and the (estimated) CP factor is denoted by: ĈP t = γ̂0 + γ̂1f
(1)
t + γ̂2f

(2)
t +

. . .+ γ̂5f
(5)
t .

The third predictor I account for is the cycle factor (cf) proposed in

Cieslak and Povala (2015). The construction of this factor rests on a de-

composition of log yields, y
(n)
t = − 1

np
(n)
t , into persistent component ηt and

shorter-lived fluctuations c
(n)
t (cycles). ηt relates to the long run inflation

expectation and is proxied by discounted moving average of realized core

CPI, while c
(n)
t , the transitory part, is counted by residual. Following the

authors’ suggestion, I regress log yields of different maturity on the contem-

porary level of long-run inflation expectation proxy: y
(n)
t = b

(n)
0 +b

(n)
η ηt+εη,

and obtain cycle as the fitted residual c
(n)
t = y

(n)
t − b̂(n)0 − b̂(n)η ηt. I then

project the average excess return onto the cross-sectional composition of

these cycles to form a (single) return-forecasting factor. In particular, I
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estimate

rxt+1 = θ0 + θ1c
(1)
t + θ2ct + εt+1, where ct =

1

4

5∑
n=2

c
(n)
t , (12)

and record the fitted linear combination as cycle factor ĉf t = θ̂0 + θ̂1c
(1)
t +

θ̂2ct.

Macro and technical analysis driven factor :

Macroeconomic fundamentals also predict bond excess return. I follow

Ludvigson and Ng (2009) and Ludvigson and Ng (2011) to estimate one

such factor. I first extract J principal components, f̂t = (f̂t,1, ..., f̂t,J) from

the set of 135 macroeconomic series, where J << 135. Extraction relies

on asymptotic PCA, and the number J is determined by the information

criteria developed in Bai and Ng (2002). I then perform best subset selec-

tion among different subsets of {f̂3t,1, {f̂t,j , f̂2t,j ; j = 1, ..., J}} using the BIC

criteria.5 Given a preferred subset F̂t, I estimate the Ludvigson and Ng

factor by running

rxt+1 = δ0 + δ′1F̂t + εt+1, (13)

and it follows that L̂N t = δ̂0 + δ̂′1F̂t.

The technical analysis driven factor I consider is implemented in a similar

way except that, principal components are extracted from a set of techni-

cal indicators. Following Goh et al. (2013), I build those indicators by

comparing two (short and long) moving averages of forward spread. Let

MAn,jt = 1
j

∑j−1
k=0 f

(n)
t−j/12, j ∈ {s, l} be the s (short) or l (long) months mov-

ing average of n-year forward spread, I(MAn,st > MAn,lt ) would then define

one such signal. Combining n = 2, 3, 4, 5, s = 3, 6, 9, and l = 18, 24, 30, 36

gives us a total of 48 signals. The return-forecasting factor T̂A is the fit-

ted value of predictive regression on the selected subset of the extracted

principal components from the 48 signals.

As a finally remark, all the estimations use only past 15 years of data.

Hence, both J and the composition of subset F̂t in L̂N and T̂A may vary

over time as φt gets updated monthly.

3.2.2. Policy function estimation

Given return predictors z ∈ {FB, ĈP , ĉf , L̂N, T̂A}, I now turn to

the question of how to transform the information contained into portfolio

5The motivation is that pervasive components in f̂ (those with large eigenvalues) is
not necessarily the ones most relevant for prediction.
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decisions. I lay out two empirical procedures to estimate the portfolio

weights. The first one assumes and estimates a conditional log-normal

distribution for the return generating process, and then solve for an optimal

policy function under the estimated distribution. While, the second one,

based on Brandt (1999), bypasses the need to specify a statistical model

on return and directly estimates the portfolio weight in a non-parametric

GMM framework.

Linear parametric rules:

This is the standard plug-in strategy with portfolio weight determined

by the estimated mean excess return divided by its estimated variance,

scaled down by the risk aversion level. I assume that bond excess returns

rx
(n)
t+1 is log-normally distributed conditional on z and model the return

generating process through a predictive regression expressed as rx
(n)
t+1 =

β(n)zt + ut+1, with homoskedastic error term ut+1 ∼ N(0, σ2). Using

conditional distribution estimated from data φt, the approximate (up to a

log linearization) optimal portfolio weight under this estimated distribution

is solved to be:

α(φt) =
β̂(n)zt + σ̂2/2

γσ̂2
. (14)

Note that this allocation rule is linear in terms of the current value of return

predictor, a consequence of the log-normal assumption. The benchmark

strategy, which ignores predictors, will be a special case of the parametric

strategy with zt ≡ 1.

Non-linear non-parametric rules:

This strategy allows for a non-linear response to the value of the predic-

tor. Following Brandt (1999), the optimal portfolio weights given a return

predictor are now estimated directly through investor’s conditional Euler

equations. In particular, denote αt to be the choice variable on portfolio

weight at time t, the first order conditions that characterize the portfolio

optimization problem can be expressed as:

Et

[
(αte

rx
(n)
t+1+rf,t + (1− αt)erf,t)−γ(erx

(n)
t+1+rf,t − erf,t) | zt = z

]
= 0.

(15)

These FOCs serve as a set of moment conditions (for each z), and then

the method of moments estimator is applied separately in each value of the

predictor. Collectively, this yields a point-wise, or non-parametric estimate

of the allocation rule α(z).

Operationally, to replace the conditional expectation (point-wise on z)

with a proper empirical counterpart, I use sample analog with each obser-
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vation weighted according to the similarity of its predictor level with the

current value z. I adopt a normal kernel density g(
zj−z
ht

) on each obser-

vation {rx(n)j+1, zj}, where ht is a data dependent bandwidth. By standard

practice, I set ht = 1.06σ̂zt
−0.2, with σ̂z being the standard deviation es-

timate of {zj}tj=1 within the estimation window and t the window length.

The empirical moment condition at time t, denoted by Qt(αt), with zt = z

and given choice variable αt, is expressed as

Qt(αt) =

∑t−τ
j=1

(αte
rx

(n)
j+1

+rf,t + (1 − αt)e
rf,t )−γ (e

rx
(n)
j+1

+rf,t − erf,t )exp(−
(zj−z)

2

2h2t

)


∑t−τ
j=1

exp(−
(zj−z)2

2h2t

)

, (16)

with the numerator normalizing the weights to sum up to one. The optimal

portfolio weight at time t, conditioning on zt = z, is estimated through,

α(φt) = argmin
αt

(Qt(αt))
2. (17)

Note that, the above procedure has not relied on any statistical model

of the return process or any (parametric) functional form of the portfolio

policy. Thus, the resulting estimator is less biased and robust to policy

function mis-specification. However, non-parametric estimation comes at

the cost of loosing observations. As the effective sample size is decreased

due to kernel weighting, variance of estimated portfolio weight would be

increased (relative to a correctly specified parametric estimator).6 Such

efficiency loss is particularly severe when the current value of predictor, zt,

falls into a sparse region of {zj}t−τj=1, and thus lacks similar observations.

Technically, the numerator in moment estimate
∑t−τ
j=1 exp(−

(zj−zt)2
2h2
t

) at

sparse sate would be too close to zero, and the portfolio weight estimate at

this point/state would be poor. To partially address this concern, I consider

trimming zt when
∑t−τ
j=1 exp(−

(zj−zt)2
2h2
t

) is below certain threshold. As an

example, we use the 10% quantile of density estimates computed at all other

observations {
∑t−τ
j=1 exp(−

(zj−zi)2
2h2
t

)}t−τi=1 . When triggered, trimming will

switch the portfolio advice to the benchmark one. In this way, estimation

error at sparse states are controlled. Yet, the remaining additional risk at

other states would still be disliked by a risk averse investor. Hence, in a

limited data environment, it is not clear à prior whether non-parametric

strategies will dominate the parametric ones.

6see Brandt (1999) for the expression of standard error on the estimated portfolio
weights and the relevant discussion on the estimator’s asymptotic properties.
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3.3. Empirical findings
3.3.1. Statistical accuracy

I start by looking at the statistical accuracy of the above mentioned

predictors in the out-of-sample environment. As a benchmark, I first use

the historical mean, which complies with a no-predictability belief. I then

switch to the constructed factors z ∈ {FB, ĈP , ĉf , L̂N, T̂A}. I plot in

Figure 1 the 15 years rolling window return forecasts (dashed), averaged

across maturities:
∑5
n=2 r̂x

(n)
t+12, in comparison to the actual values (solid).

Each panel corresponds to a particular predictor. As shown in the graph,

the benchmark forecast based on the historical mean (top left) turns out too

flat relative to the realized ones which fluctuates heavily. In contrast, the

forward spread FB (top right) picks up some of the variations in realized

return. The forward curve factor ĈP (middle left) further improves the

forecast precision in many episodes. Yet, it breaks down in certain periods

such as early 80s and the 07-10 crisis. Similarly, the cycle factor ĉf (middle

right) captures lots of the return spikes, especially from mid 80s to early

00s. But, as ĈP , it fails severely during the early 80s and the crisis period.

Macro based predictor, L̂N (bottom left), is relatively more persistent, but

it catches a lower frequency return trend. Finally, technical factor, T̂A

(bottom right), forecasts the correct sign in most instances, while as FB,

it does not perform too badly during the crisis.

FIG. 1. Out-of-Sample Bond Return Forecasts with Different Predictors
Solid lines represents the realized annual bond excess return (averaged over 2 to 5-year
maturity bonds) and dashed lines denote the predicted value based on historical mean
(Hist, top left); forward spread (FB, top middle); forward rates (CP, top right); cycle
factor (Cycle, bottom left); macro factor (LN, bottom middle) and technical analysis
factor (TA, bottom right).

1980 1985 1990 1995 2000 2005 2010 2015

−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

Realized Excess Return
Historical Mean Values

1980 1985 1990 1995 2000 2005 2010 2015

−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

Realized Excess Return
FB Predicted Values

1980 1985 1990 1995 2000 2005 2010 2015

−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

Realized Excess Return
CP Predicted Values

1980 1985 1990 1995 2000 2005 2010 2015

−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

Realized Excess Return
Cycle Predicted Values

1980 1985 1990 1995 2000 2005 2010 2015

−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

Realized Excess Return
Macro (LN) Predicted Values

1980 1985 1990 1995 2000 2005 2010 2015

−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

Realized Excess Return
Techinal Indicator Predicted Values



306 GUOSHI TONG

To provide a more quantitative assessment, I resort to the metric of out-

of-sample R2
OS , and employ the Clark and West (2007) MSFE-adjusted

test to gauge the significance of R2
OS . The null hypothesis is that, predic-

tor does not reduce expected squared forecast error, i.e., H0 : E[R2
OS ] ≤ 0,

and is against a one-sided alternative that it does, i.e., HA : E[R2
OS ] > 0.

I examine both the whole sample period (ended at Dec 2014) and the pre-

crisis one (ended Dec 2007). According to the p-values reported in Table 1,

we find that, except for FB at 5 year maturity and L̂N for whole sample

period, all nulls are rejected at 10% confidence level. We therefore conclude:

(1) bond excess returns are not characterized by random walk and (2) pre-

dictors considered, z ∈ {FB, ĈP , ĉf , L̂N, T̂A}, are generally still valid

in terms of statistical accuracy under this out-of-sample environment.7

3.3.2. Portfolio value – unconditional evaluation

I now turn to the welfare value of above predictors in making bond

allocation / market timing decisions. I depict in Figure 2 the rolling win-

dow portfolio choices of a CRRA investor using either parametric or non-

parametric rules with 15 years of data. Within each panel, a particular

predictor is considered and the resulting portfolio weights on the long term

bond are plotted against that of the benchmark strategy. For illustration,

I visualize only the case of risk aversion γ = 10 and maturity of long term

bond n = 5. We see that parametric rule weights based on alternative pre-

dictors are generally quite similar to the non-parametric ones, suggesting

that linear policy is a reasonable approximation. However, when value of

predictor falls into the sparse region, non-parametric estimates will get too

noisy and are thus trimmed. Besides, the magnitude of parametric and

non-parametric (trimmed) weights range from about -200% to 300% (on

the 5-year risky bond) for FB; -400% to 400% for CP ; -600% to 600%

for cf ; -200% to 500% for LN ; and -700% to 700% for TA, which looks

quite extreme. But given that bond risk premiums are small and predic-

tive regression R2s are high (at least relative to the case of equity return

prediction), it is indeed intriguing to take a bit leverage in collecting those

premiums.

7I am aware of the multiple and simultaneous hypothesis testing issue that with a total
number of 5 × 4 = 20 hypothesis tested in the same time, the likelihood of witnessing
a rare event and therefore the family-wise type I error rate increase ( See Dunn (1961)
and Holm (1979)). I conduct Bonferroni correction and Holm-Bonferroni method as
conservative ways to control for family wise error rate. With whole sample data, we can
no longer reject the null hypothesis of no-predictability. But with pre-crisis data, the
cycle factor survives these corrections since the associated p-values are lower than the
significance level α = 0.05 divided by 20.
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TABLE 1.

Statistical Accuracy of Bond Return Forecast in Rolling Window Scheme

Entries are the out-of-sample R2
OSs and the p-values on its significance

A. Whole sample: 1964/01 : 2014/12

Maturity FB CP cf LN TA

2-years 0.068 -0.078 0.170 -0.087 0.020

(0.025) (0.016) (0.005) (0.404) (0.007)

3-years 0.084 -0.052 0.146 -0.043 0.083

(0.013) (0.015) (0.005) (0.195) (0.007)

4-years 0.093 -0.029 0.164 -0.040 0.119

(0.015) (0.012) (0.004) (0.228) (0.006)

5-years 0.005 -0.016 0.158 -0.033 0.149

(0.144) (0.014) (0.004) (0.263) (0.005)

B. Pre-crisis period: 1964/01 : 2007/12

Maturity FB CP cf LN TA

2-years 0.083 0.040 0.299 -0.018 0.036

(0.016) (0.006) (0.002) (0.082) (0.006)

3-years 0.098 0.075 0.289 0.012 0.103

(0.009) (0.006) (0.002) (0.055) (0.006)

4-years 0.0992 0.100 0.308 0.034 0.143

(0.014) (0.004) (0.001) (0.041) (0.005)

5-years -0.001 0.103 0.308 0.038 0.173

(0.182) (0.005) (0.001) (0.038) (0.004)

I then measure the performance of these allocation rules through the

unconditional expected utilities they achieve. I report in Table 2, for each

predictor in turn, the point estimates of certainty equivalent gross returns

(CERs) of parametric and non-parametric strategy, as well as the uncondi-

tional inference results on their welfare benefits relative to the benchmark.

From the rows para CER and non-para CER, we observe that estimated

CERs of predictors based timing strategies are frequently lower than that

of the no-predictor benchmark (row Bench CER). Taking LN factor as

an example, the resulting CER estimates for either policies under differ-

ent bond maturities n range from about 1.035 to 1.053, while those of the

benchmark strategy are no lower than 1.061. Likewise, cf , CP , TA based

market timing all deliver below benchmark welfare estimates. In fact, the

cycle factor, cf , which has the highest out-of-sample R2, is generating the

lowest estimated CERs for each maturity (column) n. The forward spread

FB, interacted by linear parametric policy, stands out as an exception for

which the CER estimates reach 1.062 and 1.065 when n = 2, 3. How-
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FIG. 2. Out-of-Sample Bond Portfolio Weights under Different Rules
Solid lines denote the estimated portfolio weight based on predominant mean, which
serves as the benchmark. Dash-dot and dotted lines denote the portfolio weights gener-
ated from, respectively, the parametric and nonparametric rules.
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ever, according to the p-values of the unconditional tests (row p-value (P)

in panel FB), those welfare improvement are not statistically significant.

These findings tells us that, despite the fact of non-random walk / return

predictability, it is indeed difficult to transform the information contained

in identified predictors into expected utility gains at least by the above

policies.8

As an additional check, I contrast the performance of each parametric

timing strategy against the corresponding non-parametric one with same

underlying predictor. In terms of CERs estimates, we find evidence are

mixed, favoring non-parametric (and trimmed) policies when equipped with

CP , LN , or TA, but leaning to parametric ones when using FB or cf .

While unreported analysis suggest that non of the welfare differences are

statistically significant by conventional standard.9

3.3.3. Portfolio value – conditional evaluation

Thus far, the focus has been on the unconditional notion of welfare mea-

sure. But as mentioned above, relative performance of market timing can

8I focus on the economic value of each single return predictor, as combining multi-
ple predictors in multivariate predictive regressions do not lead to superior allocation
decisions.

9I also repeat all the unconditional performance evaluation analysis using only pre-
crisis data (ended Dec 2007). Results are quantitatively the same, and hence, the above
findings are not purely driven by the financial crisis happened in 2008.
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TABLE 2.

Unconditional Evaluation of Bond Allocation Rules

Maturity

2-year 3-year 4-year 5-year

Bench CER 1.061 1.062 1.064 1.062

FB

Para CER 1.062 1.065 1.064 1.048

p-value (P) (0.721) (0.524) (0.875) (0.404)

Non-para CER 1.061 1.057 1.049 1.054

p-value (NP) (0.896) (0.459) (0.217) (0.167)

CP

Para CER 0.971 0.968 0.951 0.917

p-value (P) (0.166) (0.179) (0.192) (0.239)

Non-para CER 1.005 1.000 1.026 1.035

p-value (NP) (0.245) (0.227) (0.151) (0.122)

cf

Para CER 0.729 0.428 0.322 0.257

p-value (P) (0.296) (0.305) (0.302) (0.304)

Non-para CER 0.297 0.018 0.020 0.040

p-value (NP) (0.306) (0.299) (0.307) (0.307)

LN

Parametric CER 1.035 1.053 1.053 1.048

p-value (P) (0.405) (0.572) (0.484) (0.432)

Non-para CER 1.046 1.056 1.056 1.055

p-value (NP) (0.388) (0.453) (0.291) (0.215)

TA

Para CER 0.864 0.730 0.666 0.579

p-value (P) (0.295) (0.304) (0.304) (0.303)

Non-para CER 1.036 0.957 0.944 0.963

p-value (NP) (0.212) (0.224) (0.182) (0.138)

be heterogeneous across different economic regimes. Accordingly, I conduct

welfare estimates and utility benefit inferences conditional on each partic-

ular regime. In particular, I let economy be at low / high unemployment

state if the contemporary unemployment rate is below / above its average,

(which amounts to 6.3% for our whole sample), and a high / low turbu-

lence regime when past year’s realized bond market volatility is greater /

less than its mean.10

10In principal, we could have a more refined definition of economic regime such as
three or four stage regimes, but this would reduce the number of data for conditional
tests and hence decrease power.
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I present in Table 3 the estimated CERs of predictors- based timing

strategies, along with the associated inference results, conditioning on low

unemployment regime (left panel) and high unemployment regime (right

panel). We notice that, while forward spread FB and CP factors appear

to generate higher CERs in high unemployment than low unemployment

periods, the rest of the factors create higher expected utility estimates in

low rather than high unemployment episodes. However, conditioning on

either regime, the relative performance of timing against the benchmark

is generally not significant. Exceptions are the macro LN and technical

analysis factor TA driven parametric policies when conditioning on the low

unemployment rate regime. The associated p-values of the structural tests

on welfare difference are below 10% when n = 2, 3, and the rejections are

favoring marketing timing for LN and benchmark for TA. This suggests

that one could use LN based parametric timing while avoid TA based

one using 2-year or 3-year bond when the current economic state is a low

unemployment one.

Table 4 examines whether relative performance of bond market timing

are specific to market turbulence regime. Following [?], I measure such

turbulence at annual frequency through the realized or integrated daily

return volatility between time t − 252 and t, i.e.,
∑t
i=t−252(rni,d)

2, where

rni,d is the daily return of a n-yr bond. Using this volatility measure, I

report separately the portfolio evaluation results conditioning on the state

of higher (left panel) and lower (right panel) than mean volatility. Based

on the relevant CER estimates, we find that most timing strategies more

profitable in low volatility than high state. One exception is the non-

parametric policy coupled with CP factor, which has higher CER estimates

in turbulent state. Conditioning on either volatility regime, none of the

relative performance against the benchmark is significant according to the

p-values of conditional tests (rows p-value (P) and p-value (NP)).

3.3.4. Discussion on the failure of timing

To better understand the performance of timing strategies, I plot in

Figure 3, for each predictor in turn, the rolling window realized returns

of parametric (dash-dotted) and non-parametric (dotted) policies in com-

parison to the benchmark one (solid). I observe that, although for many

periods market timing generates extra profits (dash-dotted/dotted curve

above the solid line), there are certain episodes in which they lead to huge

losses. These episodes tend to be characterized by two features. First, the

realized returns in those episodes deviate significantly from the forecasted
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TABLE 3.

Conditional Evaluation of Bond Allocation Rules: Unemployment rate

Low Unemp High Unemp

Maturity Maturity

2 3 4 5 2 3 4 5

Bench CER 1.063 1.065 1.066 1.064 1.058 1.059 1.061 1.059

FB FB

Par CER 1.059 1.063 1.066 1.066 1.063 1.065 1.061 1.032

p-val(P) (0.526) (0.729) (0.969) (0.626) (0.268) (0.385) (0.940) (0.352)

Non-par CER 1.059 1.049 1.049 1.053 1.061 1.064 1.048 1.054

p-val(NP) (0.192) (0.269) (0.246) (0.158) (0.513) (0.188) (0.496) (0.539)

CP CP

Par CER 0.926 0.925 0.908 0.868 1.051 1.041 1.026 1.019

p-val (P) (0.172) (0.203) (0.235) (0.274) (0.544) (0.424) (0.361) (0.356)

Non-par CER 0.969 0.964 1.004 1.018 1.056 1.052 1.052 1.053

p-val (NP) (0.241) (0.235) (0.178) (0.142) (0.682) (0.462) (0.459) (0.517)

cf cf

Par CER 0.994 0.982 0.938 0.828 0.676 0.395 0.297 0.237

p-val (P) (0.146) (0.189) (0.232) (0.283) (0.300) (0.302) (0.298) (0.301)

Non-par CER 1.046 1.045 1.039 1.031 0.274 0.017 0.018 0.037

p-val (NP) (0.283) (0.305) (0.337) (0.355) (0.304) (0.296) (0.302) (0.304)

LN LN

Par CER 1.071 1.071 1.071 1.067 1.008 1.038 1.037 1.031

p-val (P) (0.017) (0.025) (0.066) (0.173) (0.345) (0.450) (0.399) (0.393)

Non-par CER 1.070 1.070 1.069 1.065 1.026 1.044 1.044 1.045

p-val (NP) (0.113) (0.185) (0.378) (0.721) (0.289) (0.267) (0.197) (0.174)

TA TA

Par CER 1.030 1.038 1.046 1.056 0.808 0.676 0.615 0.535

p-val (P) (0.057) (0.091) (0.117) (0.359) (0.307) (0.303) (0.302) (0.300)

Non-par CER 1.047 1.049 1.055 1.061 1.024 0.909 0.892 0.914

p-val (NP) (0.168) (0.212) (0.301) (0.755) (0.360) (0.241) (0.186) (0.129)

ones. Second, the predictive regressions within the estimation windows

preceding those episodes provide good fit, which induce high leverages in

portfolio decisions. A typical example is the cycle factor, cf , driven strat-

egy. As the in-sample (within estimation window) fit by this predictor is

very good, leverage ratio in portfolio decision increases. While such high

leverage effectively captures lots of the risk premiums when forecasted cor-

rectly, it also enormously magnify the portfolio loss in presence of forecast

instability or breaks. On the other hand, the no-predictability benchmark,

although mis-specified, does not create that amount of downside risk and
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TABLE 4.

Conditional Evaluation of Bond Allocation Rules: Realized Volatility

Condition on High volatility Low volatility

Maturity Maturity

2 3 4 5 2 3 4 5

Bench CER 1.061 1.065 1.068 1.069 1.061 1.060 1.059 1.056

FB FB

Par CER 1.063 1.068 1.067 1.040 1.061 1.061 1.062 1.057

p-val (P) (0.495) (0.349) (0.964) (0.361) (0.930) (0.818) (0.728) (0.604)

Non-par CER 1.061 1.066 1.049 1.057 1.060 1.048 1.049 1.050

p-val (NP) (0.994) (0.698) (0.314) (0.204) (0.818) (0.314) (0.407) (0.414)

CP CP

Par CER 0.952 0.942 0.917 0.873 0.994 1.003 1.005 1.006

p-val (P) (0.246) (0.222) (0.204) (0.232) (0.092) (0.085) (0.123) (0.221)

Non-par CER 1.062 1.060 1.061 1.063 0.968 0.963 1.000 1.012

p-val (NP) (0.902) (0.645) (0.541) (0.526) (0.223) (0.219) (0.151) (0.115)

cf cf

Par CER 0.677 0.396 0.298 0.238 1.036 1.031 1.008 0.961

p-val (P) (0.292) (0.300) (0.295) (0.298) (0.439) (0.460) (0.382) (0.326)

Non-par CER 0.275 0.017 0.018 0.037 1.062 1.057 1.047 1.037

p-val (NP) (0.301) (0.293) (0.300) (0.301) (0.944) (0.892) (0.677) (0.590)

LN LN

Par CER 1.014 1.045 1.046 1.040 1.062 1.062 1.061 1.056

p-val (P) (0.392) (0.522) (0.452) (0.416) (0.753) (0.452) (0.624) (0.748)

Non-par CER 1.034 1.055 1.058 1.061 1.059 1.057 1.053 1.049

p-val (NP) (0.404) (0.518) (0.418) (0.357) (0.777) (0.658) (0.422) (0.305)

TA TA

Par CER 0.808 0.677 0.617 0.536 1.057 1.062 1.064 1.066

p-val (P) (0.291) (0.298) (0.299) (0.298) (0.770) (0.853) (0.648) (0.299)

Non-par CER 1.014 0.907 0.892 0.915 1.064 1.063 1.063 1.062

p-val (NP) (0.173) (0.212) (0.168) (0.115) (0.674) (0.728) (0.664) (0.477)

hence is not dominated by the timing strategy. Meanwhile, market tim-

ing in a limited data environment also renders allocation decision more

sensitive to data realizations. While benchmark strategy only needs the

unconditional mean and volatility estimates, timing strategy requires the

estimation of both return predictor and a parametric or non-parametric

policy. Such complexity, of additional parameters (for parametric policy)

and different estimation procedure (for non-parametric policy), leads to

higher estimation uncertainty and eventually translates into extra volatil-

ity in realized returns. The same argument also applies to explain why the
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less mis-specified non-parametric policy does not outperform the paramet-

ric one in a limited data environment. Finally, the negative effects of both

model complexity and forecast instability will intertwine, and our findings

actually suggest that, the resulting portfolio losses are not dominated by

the benefits of incorporating predictors, at least for the parametric and

non-parametric policies.

FIG. 3. Out-of-Sample Bond Portfolio Returns under Different Rules
Solid lines denote the gross return of the portfolio based on predominant mean, which
serves as the benchmark. Dash-dot and dotted lines denote the gross returns generated
from, respectively, the parametric and nonparametric portfolio rules in conjunction with
the corresponding predictor.
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3.3.5. Shrinkage policy

Given above findings, it is natural to ask whether we can reduce the loss

due to model mis-specification and estimation in exploiting predictability.

Here, I make one such attempt by compromising between our benchmark

strategy and the dogmatic market timing. In particular, I adopt a shrinkage

strategy, suggested in Connor (1997) and Brandt (2009) and implemented

through a Bayesian predictive regression with informative prior on the slope

coefficients. By setting the prior to be no-predictability (slope equal to

zero), I effectively tame down the estimated return forecast towards the

unconditional mean and only partially exploit the predictability. With

confidence on prior expressed in terms of expected R2 in the predictive



314 GUOSHI TONG

regression, the shrinked return forecast r̂st+1 can then be derived as

r̂st+1 =

[
1− t

t+ 1
ρ

]
ˆ̄r +

[
t

t+ 1
ρ

]
β̂olszt, for ρ = Eprior

[
R2

1−R2

]
, (18)

where ˆ̄r is the estimated unconditional mean return, β̂olszt is the original

forecast, t is the sample size and t
t+ 1

ρ

is the shrinkage factor.11 Such repre-

sentation can be thought of as an intermediate view between the benchmark

and predictive regression, with shrinkage factor as the relative weight. In

specifying this weight, I examine the whole range of prior confidence, or

equivalently the shrinkage factor, to see whether this strategy has potential

to out-perform the benchmark.

I report in Table 5, for each bond maturity in turn, the estimated cer-

tainty equivalent returns of various shrinkage strategies. I consider shrink-

age factors ranging from 0.1 to 0.9 with an increment of 0.1.12 As the

degree of shrinkage gets larger (shrinkage factor smaller), the estimated

CERs increase first and then drop. Such pattern holds for all predictors.

This suggests that, when return forecasts are tamed down, the reduction

in estimation and specification risks will initially benefit the welfare de-

spite of a distorted return forecast. But gradually, risk reductions would

be limited and forecast distortion is too big. When compared against the

benchmark, we find that at certain (high) level of shrinkage (low value of

factor) and especially for those based on TA predictor, the welfare benefit is

statistically significant at conventional levels.13 For example, with a 5-year

maturity bond, the TA driven strategy with 50% of shrinkage generates

almost 80 basis point gain in certainty equivalent which is significant at

5% confidence level. This indicates that, eventually the investor can par-

tially exploit the return predictability without being completely offset by

the associated estimation and mis-specification risks. The results become

stronger when we conduct the same analysis using pre-crisis data only. In

addition, and as will be shown in the robustness section below, the range of

desirable shrinkage that results in utility improvement is not risk aversion

11For multivariate predictive regression, each of the slope coefficient will be shrinked

according to its marginal degree of predictability, i.e

[
t

t+ 1
ρj

]
, where ρj = E

[
R2
j

1−R2

]
and R2

j the marginal coefficient of determination by variable j. See Connor (1997) and

Brandt (2009) for more detail.
12A value of 0 or 1 corresponds to the two extreme cases of benchmark and dogmatic

market timing.
13However, with a total number of 45 hypothesis tested simultaneously, the rejection

of null does not survive the Bonferroni correction to control for family-wise type I error.
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specific. One explanation is that shrinkage here only measures the conser-

vativeness on forecasted return distribution. It is not directly affected by

the risk averse level, which will be accounted for in the portfolio decision

stage.

TABLE 5.

Unconditional Evaluation of Shrinkage Strategies

FB CP cf LN TA FB CP cf LN TA

Maturity n=2 Maturity n=3

shrink Bench CER: 1.0609 Bench CER: 1.0623

0.1 1.0613 1.0615 1.0629 1.0623 1.0620 1.0630‡ 1.0632 1.0647‡ 1.0634 1.0640†

0.2 1.0617 1.0618 1.0642 1.0640† 1.0627 1.0636 1.0636 1.0662 1.0649‡ 1.0652‡

0.3 1.0620 1.0615 1.0645 1.0653‡ 1.0629 1.0641 1.0635 1.0664 1.0660‡ 1.0660

0.4 1.0622 1.0607 1.0635 1.0661 1.0623 1.0644 1.0628 1.0646 1.0666 1.0658

0.5 1.0624 1.0591 1.0597 1.0659 1.0601 1.0647 1.0615 1.0579 1.0667 1.0641

0.6 1.0625 1.0567 1.0498 1.0642 1.0542 1.0648 1.0595 1.0371 1.0661 1.0587

0.7 1.0625 1.0534 1.0235 1.0595 1.0374 1.0648 1.0565 0.9720 1.0643 1.0433

0.8 1.0625 1.0490 0.9586 1.0490 0.9895 1.0647 1.0527 0.8249 1.0609 0.9999

0.9 1.0624 1.0436 0.8416 1.0286 0.8851 1.0645 1.0479 0.6302 1.0554 0.9046

FB CP cf LN TA FB CP cf LN TA

Maturity n=4 Maturity n=5

shrink Bench CER: 1.0635 Bench CER: 1.0621

0.1 1.0644‡ 1.0646 1.0665† 1.0652† 1.0657† 1.0624 1.0630 1.0653† 1.0639† 1.0647∗

0.2 1.0652 1.0650 1.0685‡ 1.0669† 1.0675† 1.0625 1.0633 1.0675‡ 1.0655† 1.0669∗

0.3 1.0657 1.0650 1.0692 1.0681‡ 1.0689† 1.0625 1.0629 1.0682 1.0667‡ 1.067∗

0.4 1.0661 1.0642 1.0675 1.0689‡ 1.0695‡ 1.0623 1.0619 1.0665 1.0675† 1.0698†

0.5 1.0663 1.0627 1.0606 1.0691 1.0689 1.0620 1.0599 1.0597 1.0677 1.0699†

0.6 1.0663 1.0602 1.0383 1.0688 1.0662 1.0615 1.0568 1.0394 1.0672 1.0680

0.7 1.0662 1.0566 0.9674 1.0676 1.0588 1.0608 1.0523 0.9795 1.0658 1.0614

0.8 1.0658 1.0518 0.8093 1.0653 1.0399 1.0598 1.0461 0.8395 1.0634 1.0424

0.9 1.0653 1.0457 0.6054 1.0616 0.9964 1.0585 1.0383 0.6401 1.0593 0.9943

Note: ∗, † and ‡, denote significance at 1%, 5% and 10% level against benchmark.

3.3.6. Estimation window averaging

As an additional check, I investigate an alternative way to mitigate fore-

cast instability. In previous sections, our portfolio strategies have relied on

the use of all available data in the information set φt. But in presence of

potential break in forecast relation within this estimation window, it may

or may not be optimal to use the whole 15 years length. The reason is that,

when the size of break is small, adding pre-break data may reduce forecast

error variance. However, when the size is big, it is the effect of bias that
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dominates. In addition, the estimation of time and size of a break with lim-

ited data is usually subject to considerable uncertainty. To alleviate these

concerns, I borrow the idea in Pesaran and Timmermann (2007), which

combines return distribution forecasts based on predictive regressions with

estimation window of different length. In particular, rather than selecting

a single estimation window, I pool three return forecasts based respectively

on 5 years; 10 years; and 15 years data with equal weight. More specifically,

I generate one set of simulated returns from all three estimated distribu-

tional forecasts (by a particular predictor) and then solve for the portfolio

decision numerically. I also poor over different predictors as an additional

model averaging check. Table 6 documents the evaluation results of such

window averaging strategies. Comparing with Table 2, pooling over win-

dows improves the estimated CERs for most of the predictors with the

exception of FB and TA at short term maturities (n = 2, 3). But rela-

tive to the benchmark, it still fails to outperform. Finally, pooling over

predictors does not help either (sub-panel “Model average”).

TABLE 6.

Estimation Window Averaging

Maturity

2-year 3-year 4-year 5-year

Bench CER 1.061 1.062 1.064 1.062

FB

CER 1.058 1.060 1.059 1.045

(0.543) (0.584) (0.503) (0.299)

CP

CER 1.024 1.027 1.024 1.004

(0.051) (0.048) (0.052) (0.092)

cf

CER 1.010 0.912 0.850 0.854

(0.204) (0.275) (0.279) (0.239)

LN

CER 1.052 1.061 1.061 1.059

(0.565) (0.795) (0.599) (0.476)

TA

CER 0.738 0.854 0.931 0.900

(0.305) (0.304) (0.304) (0.303)

Model average

CER 1.059 1.061 1.064 1.062

(0.745) (0.819) (0.923) (0.971)
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4. ROBUSTNESS CHECK

This part of the paper checks the robustness of our baseline evaluation

results in section 3.3 with respect to: (1) different level of relative risk

aversion γ; and (2) different size of estimation window. The first exercise

involves the consideration of parametric and non-parametric strategies at

two alternative risk aversion coefficients γ = 5 and γ = 15. As shown in

Table 7, in both cases, the results are qualitatively similar to the ones in

Table 2, so that none of the timing strategies differs from the benchmark

significantly. And noteworthy, when risk aversion is low, i.e., γ = 5, some

of the entries on CER estimates, especially for cf and TA, are close to zero.

This is due to the fact that leverage ratio of less risk averse investor would

go up sharply. Then under forecasting model instability, such high leverage

leads to ex-post bankruptcy at some states and kills the corresponding

strategy.14

The second test focuses on the shrinkage strategies with risk aversion

ranging from γ = 5, 10, 15 to 20. I report only the estimated CERs and

their significance against the benchmark when the maturity of long term

bond equals 5 years. As illustrated in Table 8, entries in different panels,

which correspond to different γ s, exhibit similar pattern. Just as our

baseline results, when shrinkage factor gets smaller gradually, all estimated

CERs initially go up and then slightly drop. In addition, the range of

shrinkage that leads to a significant utility benefit remains the same across

γ, especially for TA based strategies.15 This indicates that the role of

shrinkage is not specific to any particular choice of risk aversion.

The third robustness test considers changing the size of information set.

Specifically, I set the length of limited data available to investor at 20 years.

According to Table 9, evaluation results are still qualitatively similar to

Table 2, so that a lot of competing forecasts fail to beat the benchmark.

Exceptions are the technical indicator TA based parametric timing strategy

operated with a 5-year bond and LN based parametric strategies on longer

maturity bonds. But the significance of welfare improvement merely cross

the 10% threshold. To summarize, our conclusion that it is generally hard

to exploit bond return predictability in a limited data environment is not

sensitive to the level of risk aversion and size of information set.

14Since CRRA utility is not defined on negative payoff, we truncate the loss at a gross
return of 0.01 (close to bankruptcy). This explains why some of the entries on CER
estimates, especially in the left panel when γ = 5, are close to zero.

15The range of shrinkage in which cycle factor LN based strategies outperform the
benchmark are also approximately the same.
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TABLE 7.

Parametric and Non-parametric Strategies at Different Risk Aversion

Risk aversion γ = 5 γ = 15

Maturity Maturity

2 3 4 5 2 3 4 5

Bench CER 1.073 1.074 1.076 1.073 1.055 1.056 1.057 1.056

FB FB

Par CER 1.077 1.080 1.066 0.803 1.055 1.058 1.059 1.054

p-val(P) (0.643) (0.530) (0.647) (0.310) (0.796) (0.543) (0.617) (0.612)

Non-par CER 1.073 1.075 1.012 1.046 1.054 1.050 1.051 1.053

p-val(NP) (0.969) (0.926) (0.295) (0.130) (0.678) (0.389) (0.259) (0.258)

CP CP

Par CER 0.490 0.398 0.240 0.045 1.003 1.002 0.995 0.981

p-val (P) (0.297) (0.303) (0.306) (0.307) (0.156) (0.167) (0.181) (0.226)

Non-par CER 0.847 0.793 0.959 1.002 1.025 1.023 1.036 1.040

p-val (NP) (0.280) (0.279) (0.195) (0.141) (0.233) (0.212) (0.142) (0.116)

cf cf

Par CER 0.038 0.034 0.034 0.030 0.920 0.775 0.716 0.677

p-val (P) (0.299) (0.294) (0.292) (0.194) (0.265) (0.299) (0.297) (0.294)

Non-par CER 0.038 0.034 0.034 0.034 0.634 0.407 0.358 0.445

p-val (NP) (0.299) (0.294) (0.294) (0.294) (0.304) (0.306) (0.305) (0.301)

LN LN

Par CER 0.776 1.012 1.014 0.980 1.046 1.054 1.054 1.051

p-val (P) (0.313) (0.384) (0.366) (0.340) (0.521) (0.780) (0.602) (0.516)

Non-par CER 1.062 1.040 1.042 1.047 1.050 1.055 1.054 1.053

p-val (NP) (0.497) (0.309) (0.222) (0.173) (0.527) (0.681) (0.422) (0.291)

TA TA

Par CER 0.045 0.045 0.023 0.032 0.980 0.926 0.895 0.849

p-val (P) (0.307) (0.306) (0.297) (0.288) (0.275) (0.296) (0.299) (0.299)

Non-par CER 0.216 0.045 0.241 0.086 1.044 1.010 1.003 0.993

p-val (NP) (0.306) (0.307) (0.275) (0.306) (0.262) (0.198) (0.164) (0.173)

5. CONCLUDING REMARKS

In this essay, I adopt a hypothesis testing approach to assess the portfo-

lio value of a variety of identified bond return forecasts in timing the bond

market. I emphasize on the practical usefulness of return predictors in a

limited data environment where forecast relations can merely be estimated.

I consider allocation rules that vary from not only the return predictors but

also the policy functions. I evaluate their performances relative to that of

a simple no-predictability benchmark strategy on both unconditional and
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TABLE 8.

Shrinkage Strategies at Different Risk Aversion

FB CP cf LN TA FB CP cf LN TA

γ = 5 γ = 10

shrink Bench CER: 1.073 Bench CER: 1.062

0.1 1.073 1.075 1.082† 1.077† 1.079∗ 1.062 1.063 1.065† 1.064† 1.065∗

0.2 1.073 1.076 1.088‡ 1.080† 1.084∗ 1.062 1.063 1.067‡ 1.066† 1.067∗

0.3 1.072 1.076 1.090 1.083‡ 1.088∗ 1.062 1.063 1.068 1.067‡ 1.069∗

0.4 1.071 1.074 1.087 1.084‡ 1.090† 1.062 1.062 1.066 1.067‡ 1.070†

0.5 1.069 1.070 1.067 1.085 1.090‡ 1.062 1.060 1.060 1.068 1.070†

0.6 1.066 1.064 0.962 1.083 1.084 1.062 1.057 1.039 1.067 1.068

0.7 1.061 1.054 0.310 1.078 1.056 1.061 1.052 0.979 1.066 1.061

0.8 1.054 1.038 0.037 1.068 0.913 1.060 1.046 0.839 1.063 1.042

0.9 1.043 1.015 0.034 1.045 0.343 1.059 1.038 0.640 1.059 0.994

FB CP cf LN TA FB CP cf LN TA

γ = 15 γ = 20

shrink Bench CER: 1.056 Bench CER: 1.052

0.1 1.057 1.057 1.058‡ 1.058‡ 1.058∗ 1.052 1.052 1.053 1.053‡ 1.053∗

0.2 1.057 1.057 1.059 1.059‡ 1.059∗ 1.053 1.052 1.053 1.054‡ 1.054∗

0.3 1.057 1.057 1.059 1.059‡ 1.060∗ 1.053 1.052 1.053 1.054‡ 1.055∗

0.4 1.057 1.056 1.058 1.060 1.061∗ 1.053 1.051 1.052 1.055 1.055∗

0.5 1.057 1.054 1.054 1.060 1.061† 1.053 1.050 1.050 1.055 1.056†

0.6 1.057 1.052 1.044 1.060 1.060 1.053 1.049 1.043 1.055 1.055

0.7 1.057 1.050 1.018 1.059 1.057 1.053 1.047 1.029 1.055 1.054

0.8 1.056 1.046 0.962 1.058 1.050 1.053 1.044 0.998 1.054 1.050

0.9 1.056 1.041 0.873 1.056 1.031 1.053 1.041 0.947 1.053 1.041

Note: ∗, † and ‡, denote significance at 1%, 5% and 10% level against
benchmark.

conditional bases. While the unconditional assessments ask whether return

predictor is valuable on average, the conditional ones allow for performance

heterogeneity and gauged their relative performance conditional on differ-

ent economic regimes. The estimation of performance measure relied on an

out-of-sample portfolio construction exercise and the inference procedure

built on the forecast evaluation literature in a structural way.

Empirically, using monthly US data, I find that major return predictors

identified based on either yield curve, macro-fundamental or technical anal-

ysis indicators, coupled with parametric or non-parametric strategies, fail

to outperform the benchmark rule. This suggest that welfare loss due to

estimation uncertainty and forecasting model instability is not dominated

by the benefit of incorporating return predictors. Conditional tests indi-
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TABLE 9.

A Longer Length of Information Set / Limited Data

Maturity

2-year 3-year 4-year 5-year

Bench CER 1.055 1.056 1.057 1.056

FB

Par CER 1.058 1.061 1.064 1.061

p-val (P) (0.401) (0.309) (0.224) (0.102)

Non-par CER 1.058 1.057 1.057 1.056

p-val (NP) (0.376) (0.646) (0.995) (0.929)

CP

Par CER 1.025 1.027 1.025 1.024

p-val (P) (0.125) (0.138) (0.173) (0.220)

Non-par CER 1.050 1.052 1.054 1.053

p-val (NP) (0.460) (0.426) (0.532) (0.609)

cf

Par CER 1.038 1.030 1.014 0.956

p-val (P) (0.458) (0.399) (0.362) (0.320)

Non-par CER 1.059 1.058 1.054 1.046

p-val (NP) (0.582) (0.865) (0.838) (0.643)

LN

Par CER 1.061 1.063 1.061 1.060

p-val (P) (0.185) (0.090) (0.083) (0.051)

Non-par CER 1.056 1.056 1.051 1.048

p-val (NP) (0.869) (0.892) (0.519) (0.391)

TA

Par CER 1.056 1.062 1.065 1.068

p-val (P) (0.817) (0.446) (0.261) (0.079)

Non-par CER 1.053 1.054 1.054 1.052

p-val (NP) (0.801) (0.715) (0.641) (0.678)

cate that the failure of market timing is not specific to any economic regime

of unemployment level and market turbulence state. On the other hand,

a shrinkage strategy implemented through Bayesian predictive regression,

combined with random walk prior, manage to beat the benchmark at cer-

tain range of prior confidence. The main results are shown to be robust

to investor’s risk aversion, to the size of information set, and are not com-

pletely driven by the outlier of the 2008 financial crisis.



MARKET TIMING UNDER LIMITED INFORMATION 321

REFERENCES

Bai, Jushan, and Serena Ng, 2002. Determining the number of factors in approximate
factor models. Econometrica 70(1), 191–221.

Barberis, Nicholas, 2000. Investing for the long run when returns are predictable.
Journal of Finance 55(1), 225–264.

Brandt, Michael, 1999. Estimating portfolio and consumption choice: A conditional
euler equations approach. Journal of Finance 54(5), 1609–1645.

Brandt, Michael, 2009. Portfolio choice problems. in: Handbook of Financial Econo-
metrics. 1, 269–336.

Cieslak, Anna, and Pavol Povala, 2015. Expected returns in treasury bonds. Review
of Financial Studies.

Clark, Todd, and Michael McCracken, 2001. Tests of equal forecast accuracy and
encompassing for nested models. Journal of Econometrics 105(1), 85–110.

Clark, Todd, and Kenneth West, 2007. Approximately normal tests for equal predic-
tive accuracy in nested models. Journal of Econometrics 138(1), 291–311.

Cochrane, John, and Monika Piazzesi, 2005. Bond risk premia. American Economic
Review 95(1), 138–160.

Connor, Gregory, 1997. Sensible return forecasting for portfolio management. Finan-
cial Analyst Journal, 44–51.

Diebold, Francis, and Roberto Mariano, 1995. Comparing predictive accuracy. Jour-
nal of Business and Economic Statistics 13(3).

Dunn, Olive, 1961, Multiple comparisons among means. Journal of American Sta-
tistical Association 56(293), 52–64.

Fama, Eugene, and Robert Bliss, 1987. The information in long-maturity forward
rates. American Economic Review, 680–692.

Giacomini, Raffaella, and Halbert White, 2006. Tests of conditional predictive ability.
Econometrica 74(6), 1545–1578.

Goh, Jeremy, Fuwei Jiang, Jun Tu, and Guofu Zhou, 2013. Forecasting bond risk
premia using technical indicators. Working Paper.

Holm, Sture, 1979. A simple sequentially rejective multiple test procedure. Scandi-
navia Journal of Statistics, 65–70.

Ludvigson, Sydney, and Serena Ng, 2009. Macro factors in bond risk premia. Review
of Financical Studies.

Ludvigson, Sydney, and Serena Ng, 2011. A factor analysis of bond risk premia. in:
Handbook of Empirical Economics and Finance., 313.

McCracken, Michael, and Serena Ng, 2016. Fred-md: A monthly database for macroe-
conomic research. Journal of Business and Economic Statistics.

Pesaran, Hashem, and Allan Timmermann, 2007. Selection of estimation window in
the presence of breaks. Journal of Econometrics 137(1), 134–161.

Stock, James, and Mark Watson, 2002. Macroeconomic forecasting using diffusion
indexes. Journal of Business and Economic Statistics 20(2), 147–162.

Stock, James, and Mark Watson, 2005. Implications of dynamic factor models for
var analysis. Working paper.

Thornton, Daniel, and Giorgio Valente, 2012. Out-of-sample predictions of bond
excess returns and forward rates: An asset allocation perspective. Review of Financial
Studies 25(10), 3141–3168.



322 GUOSHI TONG

van Binsbergen, Jules, Michael Brandt, and Ralph SJ Koijen, 2012. Decentralized
decision making in investment management. in: The Oxford Handbook of Quantitative
Asset Management..

Viceira, Luis, 2012. Bond risk, bond return volatility, and the term structure of
interest rates. International Journal of Forecasting 28(1), 97–117.

West, Kenneth, 1996. Asymptotic inference about predictive ability. Econometrica,
1067–1084.

White, Halbert, 1984. Asymptotic Theory for Econometricians. Academic press New
York.

Wooldridge, Jeffrey, and Halbert White, 1988. Some invariance principles and central
limit theorems for dependent heterogeneous processes. Econometric Theory 4(02),
210–230.


