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1 Introduction

Since Merton�s orginal work (1971), the problem of portfolio choice in the presence of richer stochastic

environment has become a topic of increasing interest. Recent examples include Kim and Omberg (1996),

Campbell and Viceira (1999), Xia (2001), Watcher (2002), Liu et al (2003), Chacko and Viceira (2003),

Liu (2007) etc. In almost all these papers, the stochastic investment opportunity is only composed of

the di¤usion of the risky assets as well as the underlying states, and the result is the di¤usion hedging

component in the aggregate demand for assets. Di¤usion processes explain very well, for example, the

frequent but local changes of stock prices often within one or two standard deviations from its mean value.

In reality, however, stock price jumps suddenly and radically. For example, on October 19, 1987, the Dow

index fell by 508 points, or 23% of its total market capitalization within only a few hours. Such major

events obviously cannot be explained by di¤usion and in practice they matter a lot for people�s portfolio

choice: since those who hold a lot of stocks will face the risk of running into bankrupty when disasters

strike, investors would simply try to avoid aggressive investment strategy. As a result, the possible event

risks are likely to e¤ectively decrease people�s stock holdings.

Few papers in the portfolio choice literature model event risks3 , and the only one we know so far is

Liu et al (2003) who studies the implication of the joint stock price and variance jump on people�s stock

holdings. Their main �nding is that agent facing event risk acts as if some portion of his wealth may

become illiquid and thus become less willing to hold leverage positions in stock, which is exactly what the

intuition tells us. However, the assumption that stock price and its variance always jump together seems

untenable and they don�t study the relative importance of the di¤erent hedging components in investors�

stock demand. More importantly, they only examine the e¤ect of jumps on asset allocation in a very

speci�c setup. A general framework will obviously deepen our understanding about the feature of event

risk and the induced jump hedging in a systematic way.

In the literature, Liu (2007) proposes a general framwork about di¤usion hedging. Ours setup is built

on his framework but with enlarged opportunity set characterized by the event risks as well as the risks due

to di¤usions. In particular we consider three types of jumps: the individual jump of the risky asset prices,

the individual jump of the underlying states and the joint jump of both prices and states. This modeling

includes all the possible type of jumps in reality and enables us to compare their di¤erent implications on

agent�s asset allocation. Another extension of our framework is to relax Liu (2007)�s assumption about

standard Brownians so that the more recent portfolio choice models with asymmetric information and/or

unobservable parameters can also be included asspecial cases.

In our framework, as in Liu (2007), the original portfolio choice problem is transformed mathematically

into the study of PDE (partial di¤erential equation) with respect to f; a function of time as well as the

underlying states. We �rstly summarize the general results about the closed-from solutions to the original

portfolio problem from the perspective of solving PDE, and particularly we point out why the literature

alway need to assume away intermediate consumption and/or market incompleteness for the existence of

3 In contrast, modelling events risks is common in the option pricing literature for explaining the well known "volatility
smirks". See, for example, Du¢ e et al (2000), Pan (2002), Liu et al (2005), etc.
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closed-form solutions. At the presence of event risks, however, no closed-form solutions can be expected

but similar assumptions (together with some technique conditions) will enable us to decompose the original

PDE into a series of ODEs which can be readily solved numerically. Trying to solve the original PDE

directly requires plausible boundary conditions often missing from the economic models and in addition, the

robustness of the numerical solution to di¤erent assumptions about bounday conditions is also unknown.

We next use three examples to illustrate the use of this general framework with the focus on the e¤ect

of event risks on the portfolio choice. We naturally extend Liu et al (2003) to the scenario where the

stock price and its variance both jump individually as well as jointly. This way of modeling is con�rmd

by our empirical calibration using the US stock market data. We next study the relative importance of

di¤erent hedging components in the aggregate stock demand and �nd that the jump hedging is much

more important than the di¤usion hedging, and di¤erent types of jump hedging play di¤erent roles in

the agent�s stock holdings. In another model we follow Kim and Omberg (1996) and Watcher (2002)

and use the equity premium instead of the variance as the state but extend it to include possible price

jumps. The jump hedging component is found to be even more important in this setup, and in addition

we generate di¤erent horizon e¤ect, di¤usion hedging, etc. The comparison between the speci�c models

show the importance of the choice of states, and the identi�cation of suitable states which constitute the

stochastic investment opportunity for di¤erent asset allocation problems should be an important direction

for future research within our framework.

The remainder of the paper is organized as follows. Section 2 presents the general framework. Section

3 relates the framework to the literature by demonstrating its generality and usefulness; Section 4 presents

three speci�c examples and �nally section 5 concludes with a summary of possible directions for future

research.

2 The general framework

Assume there are one riskless asset and m risky assets in the economy whose prices are P0t; and Pt =

(P1t; :::Pmt)
0 respectively:

dP0
P0

= r(X)dt (1)

dP

P
= �(X)dt+�(X)dB + UpdNp + UdN (2)

where Xt = (X1t; :::Xnt)0 are the n underlying states which follow:

dX = �xdt+�xdBx + V xdNx + V dN (3)

where B and Bx are M by 1 and N by 1 Brownians and �(X) and �x are m by M and n by N variance-

covariance matrics respectively. Assume �0dt = cov(dB; dBx); �dt = V (dBx); �dt = V (dB); whose

dimensions are M by N , N by N and M by M, respectively. We further assume that ���0 is invertible.
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In addition to the di¤usion terms, we introduce event risks to the otherwise standard model. As in

the literature, major events are modeled as jumps that follow Poisson processes and we consider the most

general case in which three types of jumps are involved: the individual jump of asset prices with jump

size Up and arrival intensity �p(X); the individual jump of the states with jump size V x and the arrival

intensity �x(X); and the joint jump of both prices and states with arrival intensity �(X) and jump sizes

U and V for prices and states respectively. Following Du¢ e et al(2000) all the jump sizes can be random

and have the "jump transform" of �p; �x; �u; �v respectively.4 We assume the jumps are independent

of di¤usion, and independent of each other; and the arrival time and the random jump sizes are also

independent.

We consider the standard additive CRRA utility5 and the representative agent maximizes:

max
f�t;CtgTt=0

E0[

Z T

0

�e��t
C1�t

1�  dt+ (1� �)e
��TW

1�
T

1�  (4)

where the � is an m by 1 variable denoting the portfolio weight of the risky assets; Ct is the consumptio

rate; WT is the agent�s terminal wealth. Following Liu (2007), we introduce � to control the relative

importance of the intermediate consumption and the terminal wealth to the agent.

At the presence of potential jumps, the agent�s wealth process follows

dW = [W (�0(�� r) + r)� C]dt+W�0�dB +W�0UpdNp +W�0UdN (5)

where the jump component for the wealth process is derived as follows:

Wt �Wt�
Wt

=

Pm
i=1 Pit �

Pm
i=1 Pit�

P0 +
Pm

i=1 Pit
=

mX
i=1

Pit
P0 +

Pm
j=1 Pjt

Pit � Pit�
Pit

=
mX
i=1

�it
Pit � Pit�

Pit
=

mX
i=1

�it(U
pidNp + U idN) = �0UpdNp + �0UdN

We use the stochastic control approach to attack the problem6 . Letting J(t;W;X) be the indirect

utility, we arrive at:

4 the "jump transform" is de�ned as �(c) =
R
Rn exp(c � z)dv(z); where v(z) is the c.d.f. for the n by 1 random jump size

Z.
5A more general preference is called "stochastic di¤erential untility" �rstly proposed by Du¢ e and Epstein (1992) as the

continous version counterpart of the traditional Epstein-Zin preference.
6Another common way for attacking portfolio choice problem is called the martingale approach �rstly proposed by Cox

and Huang (1989).
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max
�;C

f�e��tC
1�

1�  +
@J

@t
+
1

2
W 2�0���0�Jww +W (�

0(�� r) + r)Jw

�cJw +W�0��0�x0Jwx +
1

2
tr(�x��xJxx) + �

x0Jx (6)

+�p[EJ(t;W (1 + �0Up); X)� J ] + �x[EJ(t;W;X + V x)� J ]

+�[EJ(t;W (1 + �0U); X + V )� J ]g = 0

with the boundary condition:

J(t;W;X) = (1� �)e��TW
1�
T

1�  (7)

For the CRRA preferences, J is conjectured to have the following form:

J(t;W;X) = e��t
W 1�

1�  (f(t;X))
 (8)

FOCs yield the optimal policies as:

C = �
1

W

f
(9)

� =
1


(���0)�1(�� r) + (���0)�1(��0�x0)@ ln f

@X

+
�p


(���0)�1E[(1 + �0Up)�Up] (10)

+
�


(���0)�1E[(1 + �0U)�U(

f(t;X + V )

f(t;X)
) ] (11)

In the expression for �; the �rst term is the usual myopic demand whereas the remaining terms are the

hedging components. In particular, the second term is the hedging to state di¤usion while the third and

fourth are the hedging to individual price jumps and the joint jumps, respectively. The expections are with

respect to the random jump sizes. Note that there is no separate hedging component to the individual

state jumps.

Substitute the opitimal policies into (6), and tedious algebra yields the following HJB (Hamilton-

Jacobian-Bellman equation) in terms of PDE for f :
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0 = �
1
 +

@f

@t
+
1

2
tr(�x��x

0
fxx0) + [�

x +
1� 


(��0�x0)0(���0)�1(�� r)]0fx

+
 � 1
2f

f 0x[�
x��x0 � (��0�x0)0(���0)�1(��0�x0)]fx + f

1� 
22

(�� r)0(���0)�1(�� r)

+
1� 


r � �

� �

p2(1� )
22

E[(1 + �0Up)�Up]0(���0)�1E[(1 + �0Up)�Up] (12)

��
2(1� )
22

E[(1 + �0U)�U(
f(t;X + V )

f(t;X)
) ]0(���0)�1E[(1 + �0U)�U(

f(t;X + V )

f(t;X)
) ]

���
p(1� )
2

E[(1 + �0U)�U(
f(t;X + V )

f(t;X)
) ]0(���0)�1E[(1 + �0Up)�Up]

+
�p


[E(1 + �0Up)1� � 1] + �

x


[E(

f(t;X + V x)

f(t;X)
) � 1] + �


[E[(1 + �0U)1�(

f(t;X + V )

f(t;X)
) ]� 1]gf

with the boundary condition:

f(T;X) = (1� �)
1
 (13)

Note that the �rst term �
1
 is due to the intermediate consumption. It is gone when consumption is

assumed away.

Our general framework is based on the seminal contribution by Liu (2007) but contains quite a few

important extensions. For example, in Liu (2007), both Brownians, B and Bx; are assumed to be standard

and both variance matrics, � and �x; are assumed to be square. All these restrictions have been relaxed

by introducing � and � and by allowing di¤erent number of risky assets and states from their respective

Brownians. The results about di¤usion are now explicitly expressed as functions of the second moments

of the two processes�di¤usion terms: ���0; �x��x0 and ��0�x0; and particularly the di¤usion hedging

component (���0)�1(��0�x0) is just the regression coe¢ cient from the di¤usion component of dX to that

of dPP
7 and hence measures the correlation between the risky asset and the state. When this coe¢ cient

is zero, risky asset can no longer be used to hedge against the di¤usion of the states, hence the vanish of

the di¤usion hedging. The second term @ ln f
@X summarizes the agent�s attititude towards changes of the

stochastic investment opportunity characterized by X. Note sign(@ ln f@X ) = sign( @V@X ) for risk averse ( > 0)

agent.

More importantly, the jump components are missing in Liu (2007) whereas in our model there are

two additional jump hedging components in �: �p

 (���
0)�1E[(1 + �0Up)�Up] and �

 (���
0)�1E[(1 +

�0U)�U( f(t;X+V )f(t;X) )
 ]. Note the second component, the hedging to the joint jumps is composed of two

parts: �
 (���

0)�1(1 + �0U)�U which is the hedging to the price jump, and ( f(t;X+V )f(t;X) )
 which is due to

the state jumps and can be either "de�ator" or "in�ator" of the price hedging depending on how X jumps

and whether f decreases or increases in the states. We have a lot more additional terms in the PDE for f

starting from the ninth terms in the PDE. The �rst three quadratic terms in �s are from 1
2W

2�0���0�Jww

while the last three terms measure the change of the value function when jumps occur. They all vanish

7 In Liu (2005), this coe¢ cient is given by �0�1�0�0x which is less clear for interpretation.
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when there is no jump, i.e. when either the �s or the jump sizes are set to zero.

3 Relation with the literature

In the literature Liu (2007) is a good generalization of the standard portfolio choice models where i) Brown-

ians are standard and market completeness is usually assumed; ii)no event risk exists. These models range

from the original Heston (1993) to the more recent stock-bond mix problem where the risky bond processes

are taken from the DTSM (dynamic term structure models). In the following, I give two "nonstandard"

portfolio choice models in the literature that can be included as special cases of our general framework but

not that of Liu (2007)�s:

The �rst example is Yihong Xia (2001) in which she studies the e¤ects of learning on the asset allocation.

Though she starts from modelling uncertain parameters, a feature missing in our framework, after a change

of the �ltration and the corresponding Browninas her setup can be transformed into a three-state-one-

risky setup with the states X = (b; v; s)0 and stock price P . In addition, � = �� + b(s � �s); � = �P ;

�x =

0B@ v1 v2

0 0

0 �s

1CA ; dB = dẑP ; dBx =  dẑP

dẑs

!
, �0 =

 
1

�sP

!
; � =

 
1 �sP

�sP 1

!
, � = 1; and f = �

1


in our notation which means: @ ln f
@X = 1


@ ln�

@(b;v;s)0 =
1
 [�b; �v; �s]

0=�: Note the transformed Brownians are

nonstandard and cannot be dealt with in Liu (2007)�s framework. Using our general results, the derivation

of the optimal policies becomes obvious. For example, the di¤usion hedging is simply given by

(���0)�1(��0�x0)
@ ln f

@X
=

1

�2P
�P [v1 + �sP v2; 0; �sP�s]

1


[�b; �v; �s]

0=�

=
�P
�2P
(v1 + �sP v2)

�b
�
+

�s
�P�

�s�sP

Next we just use (18) in her paper to get her main analytical results in (22).

We use Liu et al (2003) as our second example which is also by far the only paper I know that studies

portfolio choice at the presence of even risk. Since they only consider joint jump, �p = �x = 0: In addition

they write ���0 as V 2 and assume the (joint) arrival intensity is given by �V; hence the jump hedging:
�
E[(1 + �X)

�XeBY ]; where eBY = ( f(t;X+V )f(t;X) )
 under their notation and the conjectured formula for

the indirect utility. As they remark, the jump hedging component is similar to a buy-and-hold demand

for an investor who maximizes his expected terminal wealth given by E0
[(1+�X)W0]

1�

1� :

Next we want to talk about the "closed-form-solution" problem in the portfolio choice literature. In

our framework, this is equivalent to whether the PDE for f can be solved in closed form or not since

the value function and the optimal policies are all expressed in terms of f . We �rstly shut down all the

jumps to get a simpli�ed PDE with �
1
 being the only nonhomogenous term. We now understand why the

literature always assumes away intermediate consumption: this is just to generate a homogeneous PDE

about f and its derivatives so that under certain technique conditions, the PDE can be decomposed into
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a series of ODEs that can be readily solved in closed forms. The most common technical conditions are

"a¢ ne returns" and "quadratic returns". See Liu (2007) for a detailed discussion.

Recently, some authors obtain closed-form solutions at the presence of consumption8 . As pointed

out by Liu (2007), the point is to transform the original PDE into a new homogenous PDE of f̂ by

a change of variable from f(t;X) to f̂(t;X) where f(t;X) = �
1

R T
t
f̂(u;X)du + (1 � �)

1
 f̂(t;X): The

key step for this approach is the validity of changing order between integration and di¤erential oper-

ator, something like whether we have @
@x

R
f(u; x)du =

R
@
@xf(u; x)du or not: This imposes an impor-

tant restriction that the original PDE must be linear and in our case the only exception is the term
�1
2f f

0
x[�

x��x0� (��0�x0)0(���0)�1(��0�x0)]fx9 which is due to the market incompleteness. If the market
is complete, this term is gone10 and we have f(t;X) = �

1

R T
t
eAu+B

0
uXdu+ (1� �)

1
 eAt+B

0
tX ; where the

integration term also found in Watcher (2002) is due to the change of variable.

What if we have both intermediate consumption and an incomplete market? Watcher (2002) considers

this problem from the perspective of extended martingale method proposed by He and Pearson (1991)11 .

She concludes that the possible help from this extension is largely illusory and the problem with interme-

diate consumption under incomplete markets "is much harder to solve". From the perspective of dynamic

programming, this problem is equivalent to whether we give closed-form solutions to PDEs with both

nonhomogenous and nonlinear terms, and we leave it for furture research.

At the presence of jumps, the PDE becomes highly nonlinear and in addition it must be solved together

with �; which is mathematically called the di¤erential-algebraic system. Despite of this complexity, the

original PDE can still be decomposed into ODEs under the same technique conditions speci�ed by Liu

(2007). As a quick example, consider the scalar case whenm =M = n = N = 1, assume away consumption

(� = 0), market incompleteness (�x��x0 � (��0�x0)0(���0)�1(��0�x0) = 0) and individual jumps (�p =
�x = 0), and impose: i) r = a0 + a1x; ii)�x = b0 + b1x; iii)� � r = kx; iv)�x = �x

p
x; v)� = �

p
x;

vi)� = lx; where a0; a1; b0; b1; k; l; �x; � are all constants.12 If we conjecture f(t;X) = exp(At + BtX)

and note @f
@t = (

_At + _BtX)f; fx = Btf; fxx = B
2
t f; (

f(t;X+V )
f(t;X) )

 = eBtV ; we derive from the HJB:

�( _At + _BtX) =
1

2
�2xXB

2
t + (b0 + b1X +

1� 


�k�x
�

X)Bt +
1� 
22

k2

�2
X

+
1� 


(a0 + a1X)�
�


� 1� 

22
l2

�2
XE2[(1 + �U)�UeBtV ]

+
l


XE[(1 + �U)1�UeBtV � 1]

with the boundary:

8See, for example, Watcher (2002)
9Note although this term is nonlinear, it is still homogeneous in f and its derivatives.
10This can be seen clearly when the Brownians are standard and � is square and invertible. In this case, �x��x0�

(��0�x0)0(���0)�1(��0�x0) =�x(I � ��0)�x0, and market completeness implies � = I; hence the vanish of this term:
11The original martingale method proposed by Cox and Huang (1989) can only be applied under complete markets.
12The conditions we impose is the so-called "a¢ ne returns" commonly found DTSM and in option pricing literature.
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eAT+BTX = 1

Comparing the constant and linear terms of X on both sides leads to

_At = �b0Bt � 1�
 a0 +

�
 ; AT = 0

_Bt = � 1
2�

2
xB

2
t � (b1 + 1�


�k�x
� )Bt � 1�

22
k2

�2 �
1�
 a1

+ 1�
22

l2

�2E
2[(1 + �U)�UeBtV ]� l

E[(1 + �U)
1�UeBtV � 1]; BT = 0

with

� =
k

�2
+
��x
�
Bt +

l

�2
E[(1 + �U)�UeBtV ]

Note without the jump terms, the ODE aboutBt is just the Riccati equation which readily allows closed-

form solutions. Because of its last two highly nonlinear terms introduced by joint jump, the ODE about

Bt and hence the whole system must be solved numerically and together with �: Still the decompostion

makes things a lot easier because we have avoided solving the original PDE directly.

4 Examples

4.1 The Merton model with jumps

In this section we apply our general framework to three speci�c models with the focus on the e¤ect of

event risks on the portfolio choices. We start from the simplest one by considering the original Merton

(1971) model with possible stock price jumps as follows:

dS

S
= �dt+ �dB + UdN

where the jump size U and the arrival intensity � are both assumed to be constant. The optimal stock

share is given by

� =
�� r
�2

+
�

�2
(1 + �U)�U

where r and  are the risk free rate and coe¢ cient of relative risk aversion, respectively. Note there is no

di¤usion hedging in this model.

Table 1 shows the quick calibration of the model. Note at the presence of event risk,s the equity

premium and the stock volatility are changed to � + �U � r and
p
�2 + �U2 respectively. In Panel A, a

1% risk free, 8% equity premium and 20% volatility roughly match the historical data for US market (see

Cochrane (2001)), while risk aversion coe¢ cient of 3 is roughly the median value considered plausible by

Mehra and Prescott (1985). We assume that in every 20 years the stock market drops by an average of

20%. This assumption is moderate since the last major stock crisis (1987) just happened less than twenty
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years ago with nearly one quarter of the market value gone.

Panel B gives the derived parameter values and the stock demands. We obtain a sizable jump hedging

of -13.5% which implies that jumps are important for investors�stock choice. If we assume away the jump,

the stock weight increases from 0.6557 to 8%
3�(20%)2 =0.6667 which shows the e¤ect of event risk on the

decrease of investors�stockholdings. This e¤ect is more pronounced for smaller : For example when  = 2;

the portfolio weight decreases from 1.1842 to 0.9806 when the jump is shut down.13 .

4.2 Stochastic volatility with multiple jumps

4.2.1 the setup

The above example gives us some general idea of how large the jump hedging could be. However, it is

static because of the time invariant investment opportunity due to the lack of underlying states. Since

Heston (1993), the literature increasingly assumes stochastic instantaneous stock variance and use it as

the state. Following this tradition we assume:

dS

S
= (r + �V )dt+

p
V dBs +XsdNs +XdN

dV = (�� �V )dt+ �
p
V dBv + Y vdNv + Y dN

Our model is an extension of Liu et al (2003) in that three types of jumps are assumed: the individual

jump of the stock price with arrival intensity �sV and jump size Xs; the individual jump of the instan-

taneous variance (of the di¤usive return) with intensity �vV and size Y v; and the joint jump with the

common arrival intensity �V and jump sizes X and Y for price and variance jumps, respectively, where

�s; �v � and the jump sizes are all assumed to be constant.14 In addition, the variance is assumed to

follow a mean reverting process with the mean �V = �
��Y v�v�Y � because of the jumps.

Assume �dt = cov(dBs; dBv): From our general results:

� =
�


+ ��

@ ln f

@V
+
�


(1 + �X)�X(

f(t; V + Y )

f(t; V )
) +

�s


(1 + �Xs)�Xs

13 Intuitively, a less risk averse agent would prefer to hold more leveraged positions but cannot do so because of the possible
illiquidy situation they will face when jump occurs. Thus, the e¤ect of event risk is larger on investors with low  who would
otherwise act more aggressively.
14We assume that the �s are constant to make the system a¢ ne. We assume constant jump sizes for simpliciy. Another

reason is that it is di¢ cult to calibrate the stochastic jump sizes from the data since jumps are rare events.

10



0 = �
1
 +

@f

@t
+
1

2
�2V fvv + (�� �V +

1� 


���V )fv +
 � 1
2

�2V (1� �2)f
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Since our focus is the optimal portfolio choice, we assume away consumption or set � = 0: Hence the

boundary condition:

f(T; VT ) = 1

Conjecture the following form of solution

f(� ; V ) = exp(A� +B�V ) with � = T � t

and we obtain the following ODE-algebraic system

_A� = �B� +
1�
 r � �

 ; A0 = 0

_B� =
1
2�

2B2� + (
1�
 ��� � �)B� + �1

2 �
2(1� �2)B2� + 1�

22 �
2

�M1 �M2 �M3 +M4 +M5 +M6; B0 = 0

� = �
 + ��B� +

�
 (1 + �X)

�XeB�Y + �s

 (1 + �X
s)�Xs

where

M1 =
�s2(1�)
22 [(1 + �Xs)�Xs]2

M2 =
�2(1�)
22 [(1 + �X)�XeB�Y ]2

M3 =
��s(1�)

2 (1 + �Xs)�Xs(1 + �X)�XeB�Y

M4 =
�s

 [(1 + �X
s)1� � 1]

M5 =
�v

 [e
B�Y

v � 1]
M6 =

�
 [(1 + �X)

1�eB�Y � 1]

4.2.2 Relative importance of the di¤erent jump hedging components

Before calibrating the model to the real data, we want to compare the relative importance of the three

types of jumps on agents�portfolio choice. To this end, we do some temporary calibration �rst with the

results given in Table 2.

Panel A calibrates parameters not related to the jumps. Columns 1 to 4 are directly from the last

example for the equity premium, the stock volatility, the risk free rate, and the coe¢ cient of relative risk

aversion, respectively. The discrete macroeconomics literature usually sets the time discount factor, �; to
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.98 per year, or .02 if time is continous. Hence, column 5. Columns 6 to 7 are taken from Pan (2002)�s

estimations of her SV0 model with some adjustment. In particular, the convergence speed of the mean

reverting stock variance in her paper is just � due to the lack of variance jump. We write it as ��Y v�v�Y �
in our model.

Panel B calibrates the jumps. we assume the same jump sizes for the two price jumps and two variance

jumps, respectively, and we assume the identical arrival intensity for all the three types. We choose the

same average arrival intensity as in the last example15 , but we increase the price jump size to -50% so as

to dramatize the results. The variance jump size is taken from Liu et al (2003), which means that when

jump occurs, the volatility will on average increase up to 50%: The derived parameters are given in Panel

C which will be used as the benchmark values for our temporary calibration.

To compare the relative importance among di¤erent types of jumps on the agent�s asset allocation, we

plot in Figure 1 the aggregate demand for stocks under the following six cases: i) the benchmark; ii) the

individual price jump is shut down; iii) the individual variance jump is shut down; iv) both individual

jumps are shut down; v) the joint jump is shut down; vi) all three types of jumps are shut down. In each

of the cases, the original values of the equity premium, the stock volatility are both kept constant for the

purpose of comparison. For example, the stock volatility which is still set to 20% is given by
p
(1 + �X2) �V

in ii) with the individual stock price jump shut down: Hence the implied � and �V are di¤erent from their

benchmark values and need to be recomputed. Similarly all the other related parameters like �; �; etc also

need to be recomputed. We follow this principle in all the following calibrations and do the recomputation

whenever necessary.

We now have the intertemporal asset allocation as stock weight changes over time. This is because

B� shows up in both of the di¤usion hedging and the hedging to the the joint jump. The stock weight

� monotonically increases in the investment horizon16 and converges to a constant when � !1: Within
this paper we generally consider a horizon up to 2 years since there is little time dependency beyond it17 .

By comparison with Liu et al (2003), we have identifed two new features about the jump hedging

components: 1) the individual variance jump has little e¤ect on the portfolio choice. Note the bechmark

case and the case when V-individual is shut down almost coincide with each other, and so do the cases when

we shut down the S-individual and when we shut down both individual jumps. Theoretically, individual

V-jump still matters for � through B� 18 ; but this indirect e¤ect is very small. More importantly, there is

no separate hedging component to individual variance jump for two reasons: i) the individual V-jump is

independent of the other two price jumps, hence the investor cannot use stock to hedge against it; ii) the

individual V-jump doesn�t show up in the wealth process and hence has no e¤ect on the agent�s terminal

wealth. Because of this, in the following calibration with real data we simply shut down the individual

V-jump.

2) The agent has a stronger hedging demand to the individual price jump than that to the joint jump.

This can be seen by comparing the increased amount of stockholding when we only shut down the individual

15Since the three jumps are assumed to be independent, the average arrival intensity is just �s �V + �v �V + � �V =.05.
16This is not always so. Actually � decreases in the � when  < 1:
17 In some cases below, we consider investment horizon up to 5 years.
18Note both �v and Y v enters the term M5 in the ODE for B� :
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P-jump and when we shut down both individuals. Put it in another way, individual price jump is more

e¤ective in decreasing investors�stockholding than the joint one which may seem counterintuitive at �rst

glance. To explain it mathematically, note j�s (1 + �X
s)�Xsj > j� (1 + �X)

�XeB�Y j or equivalently,
eB�Y < 1 with all the other being equal. This is because the agent�s value function and hence the f

function decreases in V 19 , hence ( f(t;V+Y )f(t;V ) )
 = eB�Y < 1 for positive variance jumps20 . As mentioned

before, the hedging componet to the joint jump is composed of two parts: the �rst part, � (1 + �X)
� ; is

the hedging to the price jump within the joint jump just like that to the individual P-jump. However, the

second term due to the variance jump, ( f(t;V+Y )f(t;V ) )
 works as the de�ator in this model which decreases

the investor�s incentive to hedge against the price jump risk. Intuitively, a simultaneous variance jump

means a higher probability for the dropped stock price to be back to normal, hence less incentives for the

investors to decrease their stockholding beforehand to prepare for the future illiquidity caused by price

drops.

We plot the de�ator over the investment horizon for di¤erent Y , variance jump sizes in the joint jump,

in Figure 2. In our temporary calibration, the de�ator is also the ratio between the joint jump hedging

and the individual P-jump hedging. This ratio is shown to increase in both � and Y . For example, at

� = 2; the agent�s hedging to the joint jump is about 98% of that to the individual P-jump at Y = 0:1,

but it decreases to less than 85% when the joined variance jump size increases to 0.7.

In summary, the three types of jumps play di¤erent roles in the agent�s asset allocation. In particular,

the individual V-jump alone almost has no e¤ect on investors�hedging demand; when joined with the price

jump, it decreases instead of increasing the agent�s hedging incentive against the event risk caused by the

price jump within the joint jump21 . As a result, the individual price jump is the most e¤ective among the

three types for decreasing investors�stockholding.

Why is it important to set to identical both the arrival intensities and the jump sizes when comparing

their relative importance ? Because arrival intensity and jump size have an asymmetric impact on people�s

portfolio choice as documented in the literature.22 To illustrate it clearly in our setup, we shut down

both individual jumps and consider three senarios for the joint jump in which the product of the arrival

intensity and jump size, � �V X; is kept constant: i) � �V = :01; X = �50%; ii) � �V = :02; X = �25%; iii)
� �V = :01� 5

9 ; X = �90%: The results are shown in Figure 3.
From Figure 3, the jump size is much more e¤ective in decreasing the investor�s stockholding than the

arrival intensity. In other words, investors are more afraid of a rare but large stock market crash than

a more frequent but less severe market downside movement. Intuitively, rare but large jumps is more

likely to get the investors into illiquid situation while small jumps strike the investors as closer to the

local di¤usion changes which they deal with every day. Actually, di¤usion can be regarded as the limit of

jumps in which the jump size approaches zeros while the arrival intensity approaches in�nity23 . Hence,

19That investor�s utility increases in the expected stock return and decreases in its variance is the starting point for the
classicle static portfolio choice models. See Sharpe (1965).
20Of course, we also need the agent to be risk averse, i.e.  > 0; which assumed throughout the paper.
21This is of course not always so theoretically eB�Y may also work as in�ator
22See, for example, Liu et al (2003) or Barro (2006).
23See Merton (1990), for example.
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we deduce that a jump hedging should be a lot larger than a di¤usion hedging.

4.2.3 Model calibrations

To calibrate the model, we use the monthly US �nancial data for the sample period from January1926 to

December 2004 from CRSP. We use the value-weighted index returns (cum-dividend) for the stock return

and the 90 day T-bill for the risk free rate, both of which are made real using the CRSP in�ation data

and then annualized. Panel A of Table 3 shows that the calibrated parameters are not related to jumps.

The �rst three columns reported the equity premium, the stock return volatility and the risk free rate

from our sample period. For the remaining columns we take the results from the temporary calibration

in last subsection. In particular, we still use Pan (2002)�s estimations for �; � and the convergence speed.

We will later do comparative analysis for these three values to test the robustness of the results.

The calibration of the jump-related parameters takes more time. Firstly from what we�ve discussed in

the last subsection, we shut down the individual V-jump since our focus is the portfolio choice problem.

We then focus on identifying all the price jumps during our sample period. It is important to set the

criteria so as to identify the rare major events from the common local di¤usion. In Liu et al (2003), they

use a threshold value of -25% for the monthly stock returns which is almost 6 standard deviations below

the mean. This is too extreme in our opinion, since there is only 0.62% probability that stock return will

drop 2.5 standard deviations below its mean if approximated by a normal distribution, and the probability

is less than 10�9 for values 6 standard deviations below the mean! Even after considering the "fat tail"

property of stock return, their criteria still seems too extreme. In the following we set 2.5 standard

deviations as our criteria. In our sample period, the mean and standard deviation for the monthly US

stocks are 0.7% and 5.4%, respectively. Hence a jump occurs whenever the monthly return drops below

0.7%-2.5*5.4%=-12.8%, and we �nd a total of 13 jumps from our sample24 . To compute the jump size we

use X � 0:7% where X is the return of the month during which jump occurs.

Next we need to �nd out whether these price jumps are individual or joint with the variance jumps.

To do this, we compute the stock volatility for each of the price jump months as follows: for jumps that

take place after 1962, the volatility is computed as the annulized standardard deviation of the daily stock

returns from CRSP daily stock �le for each of the event months25 . Before 1962, the daily stock data

are not available, and hence, we follow Liu et al (2003) to approximate the volatilty by the annualized

standard deviation of the returns for the �ve-month window centered at the even month. Finally we use

the threshhold value of (40%)2 to determine whether the variance jumps or not.26 Once a variance jump

is identi�ed, we use X2 � (18:73%)2 to compute its jump size, where X is the computed volatility. The

results are summarized in Table 4.
24Liu et al (2003) �nd just eight jumps for their larger sample period from 1802 to 2000 due to their much stricter criteria.

Though their estimated jump size is also larger, their results are still likely to underestimate the impact of jump on investors�
portfolio choice.
25We use the mutilpler

p
252 for annualizing where 252 is the number of trading days each year.

26From Pan (2002)�s estimation, the standard deviation of stock variance (volatility of volatility) is
p
:0035 = 5:91%:

(40%)2 is more than two standard deviations above (18:73%)2; the stock variance of our sample period which is taken as the
mean of the variance. Hence it is not unreasonable to regard variance above this threshhold as due to jump.
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From Table 4, in a period of 79 years, there are a total of 13 jumps, 4 of which are the joint jumps with

an average jump size of -24.1362% for the price jump, and 0.3875 for the variance jump respectively. The

remaining 9 jumps are individual price jumps with average jump size -16.4706%. Intuitively, larger price

jumps are more likely to be joined with variance jumps but are also rarer. Interestingly, 8 of 13 jumps are

clustered in the 1930s showing the possible correlation among di¤erent jumps. For the last 60 years or so,

however, this correlation feature is largely gone. Hence the calibration of parameters related to jump in

Panel B of Table 3. Finally in Panel C we list the derived parameters.

4.2.4 Implications of the model

We show the model implications by plotting and comparing the aggregate demand, the hedging demand

to state di¤usion and the hedging to the two types of jumps under a wide range of parameter values.

In particular, we do the comparative analysis for �; �; and �; since they are all directly taken from Pan

(2002)�s estimation where no variance jump is assumed and thus might not be appropriate for our model.

The results are shown in Figure 4 to Figure 6. For all these cases, the myopic demand is kept unchanged

at �
 = 1:0293:

Firstly let�s take a look at Figure 4 for di¤erent �s. We notice right at the beginning that in general the

hedging component to jumps are several times larger than that to di¤usion. For example, when � = �:57
and at � = 1 the absolute value of the hedging demand due to joint jumps and individual P-jumps are

17.7% and 25.7%, respectively whereas the di¤usion hedging is less than 4%. Another di¤erence is that

the jump hedgings are always negative, meaning the uniform "decreasing e¤ect" of even risk on the agent�s

stockholding. In contrast, the di¤usion hedging can be either negative or positive depending on the sign

of �: In particular it vanishes when � = 0:

Since a nonzero � is the underlying reason for the existence of di¤usion hedging in that the agent can

use certain position of the stock to hedge against the variance di¤usion, � has the direct and dominant

e¤ect on di¤usion hedging. Hence, the aggregate demand changes with � in exactly the same way as the

di¤usion hedging does. However � doesn�t change the di¤usion linearly since B� is also a function of �:

Actually � matters for jump hedging through B� and then onto the jump hedging components of � since

B� and � must be solved together. In particular, both jump hedging components decrease27 monotonically

in �:

From the calibration P-jump has smaller jump size though it happens more frequently, but we know

larger jump size matters more for jump hedging than the arrival intensity. However, the �gure shows that

individual P-jump gives the investor stronger incentive to decrease his stockholding. Another di¤erence

between the two jump hedging component is the their di¤erent horizon e¤ects. In particular, as the

investment horizon shortens, the agent has stronger desire to hedge against the joint jump but weaker

desire against the individual P-jump28 . Both are explained by the variance jump term, eB�Y ; within the

joint jump hedging which serves as a powerful de�ator to the P-jump hedging due to a large calibrated

27The increase/ decrease of jump hedging refers to the absolute value.
28We focus on the cases when � < 0 because the literature normally documents a negative correlation between the stock

price innovation and variance innovation.
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variance jump size, but gradually loses its powers as � decreases.

Next we consider the model implications for di¤erent �2s in Figure 5. Since �V is kept constant at

0.0340 �2 can be equivalized as the variance of the variance29 . Notice the similarity between � and � :

both a¤ect the di¤usion hedging directly; both enters the expression for di¤usion hedging linearly but

the e¤ect is not linear because B� is a function of both � and �; and both matters for the jump hedging

through B� : Unlike �; however, larger � induces stronge jump hedging (absolute value) for both jump

types. Intuitively a more volatile stock variance gives investors the feeling that the whole stock market

becomes more unstable, and hence, a jump seems more likely to be expected.

Finally we consider �s in Figure 6. Note we also plot on the bottom the two components of the hedging

demand to the joint jump: � (1+�X)
�X or the the hedging to the price jump within the joint jump, and

eB�Y ; the "de�ator" due to the variance jump. Again � can be equivalized with the convergence speed

for the variance since both the Y s and the �s are kept constant30 . In our model a higher � has two e¤ects:

it makes the variance converge faster to its average, and it also makes the stock less volatile on average31 .

In a word, a higher � means less stock variance in a double sense. As a result, it has a very strong e¤ect on

the di¤usion hedging. For example, at � = 1 the di¤usion hedging is over 10% when � = 7; but it rapidly

decreases to just about 2.5% when � = 2:

Unlike �2; a higher � has a di¤erent e¤ect on the two jump hedging components. In particular, it

increases the hedging to the individual P-jump but decreases that to the joint jump. Actually the hedging

to the P-jump, whether it is individual or joined with the variance jump, always decreases with the increase

of � as we can see from sub�gure (3,1). The reason is the same as that for a lower �2 : a higher � makes

the whole market seem more stable to the investors, and hence, a less desire to hedge against their future

illiquidity. The di¤erent behavior between the two components is again due to the de�ator. In particular,

as shown in sub�gure (3,2), higher � can e¤ectively increase the "de�ator", or in other words, e¤ectively

decrease its ability to lower the investors�hedging incentive against the P-jump. For example, when � = 1;

the agent holds less than 70% of the P-jump hedging as the hedging to the joint jump when � = 2: This

proportion increases to over 90% when � = 7: As a result, the hedging to the joint jump behaves just the

opposite to the P-jump hedging within it.

In summary, the model has three main implications that survive the above comparative analysis: i)

the hedging demand to both types of jumps are important and are usually several times larger than that

due to di¤usion hedging; ii) the hedging to the individual P-jump is more important than that to the

joint jump; iii) the two jump hedging components can behave very di¤erently (horizon e¤ect, response to

parameter changes, etc) due to the de�ator in the joint jump hedging.

The above calibration gives a stock weight of over 60% which seems too high for the real world prac-

tice.32 One of the possible reasons, as pointed out by Liu et al (2003) may be the possiblity of survivorship

bias for US during the last century. In fact, there are many countries which have experienced huge market

declines during relatively short periods of time in the last century, and in some cases, major events such as
29The variance of the variance is given by �2 �V :
30The convergence speed is given by � � Y v�v � Y �:
31This is because �V = �

��Y v�v�Y � :
32For example, Heaton and Lucas (2000) estimate that the average stock share in �nancial wealth is just 23%.
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wars or polictial crises even led to the stock markets being closed for years33 . Considering these factors, we

recalibrate our model by assuming the stock price on average drops by -50% and the variance jumps up to

70% while all the other parameters remain unchanged. Figure 7 shows the results for aggregate demand.

The aggregate demand e¤ectively rises due to increased hedging against jumps. For example, at � = 1

and for our benchmark values, the aggregate stockholding is less than 53% instead of 62%. In addition,

this alternative calibration can roughly match what�s found in the empirical study about people�s portfolio

choice by generating a stockholding of around 25% for  = 7 which is about the largest value for a

coe¢ cient of relative risk aversion considered feasible by Mehra and Prescott (1985)34 .

4.2.5 Jump misspeci�cations

In this subsection, we recalibrate our model to two cases of jump misspeci�cations normally found in the

literature: i) the variance always jumps together with the price; ii) there is no variance jump.35 To see

what the di¤erence could be, Table 5 shows the recalibrations where we only list the parameters that need

to be recomputed. Panel A shows the recalibration for i) where -18.8292% is the average jump sizes for the

whole 13 price jumps while 0.1717 is the average of X2 � (18.73%)2 in the last column of Table 4 which
is the "variance jump size" if we believe variance always jump together with the price. In Panel B for ii),

we simply shut down variance jumps, i.e., set � �V = Y = 0: Figure 8 shows the di¤erence for the aggregate

demand as well as its three components.

The di¤erence is sizable though not very large for our benchmark values: at � = 1; the aggregate

demand is 63% in our model but decreases to 62% if we think price jumps are always joined by variance

jump and further to 60% if variance jumps are simply shut down. For di¤usion hedging we have the similar

amount of underestimation though the relative change is much larger. Of course, what the misspeci�cation

matters the most is the two jump hedging components. For example, if variance jump is shut down, then

the hedging demand due to individual P-jumps almost doubles from about -25% up to about -50%!

Next in Figure 9, we study the misspeci�cation e¤ect on the aggregate demand only for di¤erent s

since  is normally regarded as the most important parameter for the agent�s portfolio choice. Firstly we

notice a reversed horizon e¤ect for  < 1 in that the older investors should hold more stocks than the

younger ones: In addition the aggregate demand is instead overestimated under both misspeci�ciations for

 < 1: For the other three cases when  > 1; the misspeci�cation e¤ect is larger for larger : For example

when  = 1:5; the ignorance of variance jump only decreases the total demand from 1.2 to 1.16, a 3.3%

decrease which increases to 6.2% (from 0.325 to 0.305) when  = 6: Finally we notice that for  > 1;36

shutting down variance jump always decreases the total demand. This is because, when transfered from

33Some of the nearest examples include the Mexican �nancial crisis (1994), the South East Asia �nancial crisis (1997) and
Russian stock market crisis (1998).
34Some more radical choice of jump sizes, for example, X = �80% can generate a plausible stock share for just  = 3:

Many times what matters to the jump hedging is people�s psychological response. People may decrease their stockholding for
worrying about very large market crash though what happens may be much less severe ones. Hence we justify a very large
price jump size as the one that investors are fearing about.
35For example, Liu et al (2003) only consider the joint jump, while Pan (2002) only considers the individual price jump.
36 < 1 is implausible at least in portfolio choice models since it generally implies a too high stockholding. As pointed out

by Samuelson (1991), investors who are less risk averse than logarithm can behave very di¤erently from those whose  > 1:
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joint jump to the individual price jump, investors get stronger desire to hedge, i.e., to decrease their

stockholding. It is worth noticing that under our benchmark values, allowing variance to jump together

with price decreases �: This is not always the case, as will be seen in Figure 10.

In Figure 10 we show that the jump misspeci�cation e¤ect could be large for certain parameter values.

We consider an investment horizon up to 5 years since there is still a lot of time dependency beyond � = 2:

At � = 5; the percentage underestimation of the aggregate demand when the variance jumps are not

considered are 16.3% (from .86 to .7) and 15.6% (from .77 to .65) for (� = 2; � = �:9) and (� = 2; � = :5)
respectively. Interestingly, for the case where P-jump and V-jump always occur at the same time, the

aggregate demand is �rstly overestimated and then it quickly becomes underestimated by up to 20% (from

.9 to 1.08) for (� = 2; � = �:9) at � = 5! 37

5 Stochastic equity premium with jump

Though the literature is dominated by using the stock volatility as the state, the equity premium is also

important for people�s portfolio choice decision. Below we consider a stochastic equity premium model by

extending Kim and Omberg (1996) and Watcher (2002) to the event risk case as follows:

dS

S
= �dt+ �

p
ZdBs +XsdNs +XdN

dZ = (�� �Z)dt+ �z
p
ZdBz + Y zdNz + Y dN

where

Z � �� r38

The arrival intensities for the three types of jumps and the two di¤usion variances are assumed to be

�sZ; �zZ, �Z; �2Z and (�z)2Z; respectively, where �s; �z �; �; and �z are all constants. The assumption

makes sense because in reality stock market prosperity characterized by high equity premiums is always

followed by larger stock price volatility and even market crash, possibly due to excessive speculation.39 .

Like the stochastic variance case, the equity premium is also assumed to follow a mean reverting process,

which combines the assumption about �s and variance to make the whole system a¢ ne.

Again let �dt = cov(dBs; dBz) and assume away consumption, the portfolio policy and the HJB are

given by:

37Note from the above analysis, smaller � means a more unstable stock market. Hence Liu et al(2003)�s setup runs the
risk of greatly overestimating the stockholding by investors in the newly emerging market power where the stock market is
usually more volatile.
38Strictly speaking the equity premium is (1 + �sXs + �X)Z not Z because of the existence of jumps. We just continue

to call our state equity premium for convenience.
39The latest of which is, of course, the burst of the high tech bubble.
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with the boundary condition:

f(T;ZT ) = 1:

Again conjecture f(� ; Z) = exp(A� +B�Z) with � = T � t, and we obtain

_A� = �B� +
1�
 r � �

 A0 = 0

_B� =
1
2�

z2B2� + (
1�


��z

� � �)B� + �1
2 �

z2(1� �2)B2� + 1�
22�2

�M1 �M2 �M3 +M4 +M5 +M6 B0 = 0

� = 1
�2 +

��z

� B� +
�
�2 (1 + �X)

�XeB�Y + �s

�2 (1 + �X
s)�Xs

where

M1 =
�s2(1�)
2�22 [(1 + �Xs)�Xs]2

M2 =
�2(1�)
2�22 [(1 + �X)

�XeB�Y ]2

M3 =
��s(1�)
�22 (1 + �Xs)�Xs(1 + �X)�XeB�Y

M4 =
�s

 [(1 + �X
s)1� � 1]

M5 =
�v

 [e
B�Y

z � 1]
M6 =

�
 [(1 + �X)

1�eB�Y � 1]

We use annual US �nancial data from 1926 to 2004 to calibrate parameters not related to jumps. The

equity premium is computed as the di¤erence between the anual NYSE/AMEX index returns and the 90

day US T-bill returns, and the dS
S sequence is computed as the annual growth rate of the CRSP total

market values. The standardard deviation of the equity premium is 20.26% while the correlation coe¢ cient

between the premium and dS
S is .97740 . Finally we discretize the equity premium process as the following:

40Note Watcher (2002) simply sets � = 1: The main reason that � is very close to one in our calibration is because the
VWRETD �le is actually generated from growth rate of total market value �le with some adjustment and there is not much
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Zt+1 = �+ (1� � + �zY z + �Y )Zt + �

where � is the error term with a mean of zero. We run the autoregression for the equity premium and use

the intercept as the approximation for �; which will undergo comparative analysis in the following: The

results are shown in Column 6 to 9 in Panel A of Table 6, where Columns 1 to 5 are directly taken from

the calibration of the previous example.

To calibrate the jumps, we make the simplest assumption that the equity premium doesn�t jump41 and

take all the 13 jumps from last example as the individual price jumps. Panel B of Table 6 reports the

results. Finally we use �Z = �
���zY z��Y to get the derived parameters in Panel C. The model implications

shown in Panel 11 for the aggregate demand and its three hedging components under di¤erent �s and

�s whose values are less likely to be accruately estimated. Note the myopic demand is kept constant at
1
�2 =1.1956

Comparing Figure 11 with Figure 4 to 6, the stochastic equity premiummodel implies a higher aggregate

stock demand (66% vs 63%) and higher jump hedging (52.6% vs 17.7%+25.5% =43.2%, absolute value)

than that of the stochastic variance model. In addition, the jump hedging is even more important with

respect to the di¤usion hedging in the current setup. The main di¤erences, however, are i) we now have

a negative di¤usion hedging instead of postive one. Intuitively the agent wants to short stocks so as to

hedge against the negative innovation of the expected stock price changes which also decreases the stock

price itself due to their positive correlation. ii) the horizon e¤ect for the aggregate demand is now reversed

which means the older investors instead of the younger ones should hold more stock.

Like the stochastic variance case, the changes of parameters not related to jump size or arrival intensities

also matter for the jump hedging through B� though the e¤ect is small. Both larger � and smaller � tend

to strengthen the di¤usion hedging since larger � makes the holding of a leveraged position of stock a more

e¤ective way for hedging premium di¤usion, while a smaller � means smaller average equity premium

which makes investors more worried about the premium di¤usion. Though the amount of change is small,

the relative change is huge: at � = 1; with the increase of � from 0.5 to 0.977, the absolute value of

the di¤usion hedging doubles from 0.5% to 1%! And the relative change due to � is even more radical.

In addition, the change of di¤usion hedging due to parameter changes determines that of the aggregate

demand.

The comparison of the above two examples tells us the importance of di¤erent modeling of the under-

lying state which can generate reversed horizon e¤ect, reversed di¤usion hedging, etc even for the same

stock/ riskfree allocation problem. Of course, it may be even better to study this problem within our

general framework by modelling both the variance and the equity premium as the states. The challenge is

variance for US Tbills. In the literature, the instantaneous return, �, is always calibrated with the realized stock returns
(aggregate stock price changes) though it is actually the expected part of the price change. Normally this doesn�t matter since
the expected part averages to zero. Since we explicitly model the di¤erence between the gross stock price change, dP

P
; and

its expected part � in our setup to compute their correlation, this standard calibration may be problemic and a better way
is to use the professional forecast data about stock returns for �; like what Fan (2005) does for the expected bond returns.
41This is not unreasonable since price jumps usually come unexpected while equity premium represents the expected

component of price changes. In �gures not reported, we �nd that the results are largely unchanged if we model jumps for Z.
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the mathematical tractability. In particular, it becomes hard to make the systme a¢ ne with two states,42

which means that we have to deal with the original PDE directly. This di¢ culty, combined with the

di¢ culty at the presence of consumption and market incompleteness, points to a potentially fruitful way

for future research, which will be summarized in the conclusion. Finally, we want to point out that one

implication that survives di¤erent setups is the great importance of jump hedging within the hedging

demand components.

6 Conclusion

In this paper, we study the e¤ect of event risk on people�s portfolio choice by �rstly proposing a general

framework and then apply it to three speci�c examples. Our main �ndings include: i)hedging demand due

to jumps are very important under a wide range of parameter values and di¤erent setups, and in general

several to dozens of times larger than that to state di¤usion; ii) It is important to model multiple types

of jumps since they are not only supported from the calibration of the US stock market data, but also

plays di¤erent roles in agents�asset allocation. In addition, the over/ underestimation of the portfolio

weight under jump misspeci�cation could be very large; iii) the di¤erent choices of state can generate very

di¤erent implications even for the same asset allocation problem.

There are several directions for future research both within and beyond our general framework. Within

the framework, the most important thing to do is to identify appropriate states for various portfolio choice

problems, not only that of stock/riskfree allocation which is the most common in literature, but also

stock/ risky bond allocation, allocations between di¤erent bond portfolios, stock portfolios, funds, etc. To

give an example, some recent papers43 about stock/ riskfree allocation start with asymmetric information

or/and the unobservable parameters of the stock price process. Then, after a change of the information

�ltration and the corresponding Brownians, the asymmetry or/and unobservability is replaced by a series

of states computed as the moments of the unobservables under the new �ltration, which exactly �ts into

our framework.

Another direction is a mathematical one: to study the original portfolio choice problem from the

perspective of the corresponding PDE. Roughly speaking, this study can be in two categories: the �rst

is whether we can and how to decompose the original PDE into a series of ODEs at the presence of

nonhomogenous (due to consumption) and nonlinear (due to market incompleteness) terms? Without

event risk, this is usually equivalent to whether we can �nd closed-form solutions to the original portfolio

choice problem. At the presence of event risk , the decomposition enables us to avoid solving the original

PDE directly. The key di¤erence between PDE and ODE in our framework is whether the states are

the arguments. If yes as in the PDE case, two pairs of boundary conditions for the states are demanded

which are largely missing from the model itself and can only be got via mathematical analysis or even

42The problem is with the two terms (��0�x0)0(���0)�1(�� r) and (�� r)0(���0)�1(�� r) in the original PDE which
becomes �xZp

V
and Z2

V
where Z=�� r in the stock/ riskfree allocation setup. Neither of them can be made a¢ ne in Z or V

without a deterministic relation between the two states, which means only one state is needed.
43See, for example, Xia (2001), Turmuhambetova (2005).
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assumptions. This lead to the second category of the study for PDE: a mathematical identi�cation of the

boundary conditions if the decomposition is not available; and the robustness of the numerical results under

various boundary conditions in the case that these condtions must be assumed44 . Though mathematical,

this research could be very helpful economically since once solved, we can just forget about restrictions

such as a¢ ne returns which usually cannot be satis�ed; and we can study consumption choice as well as

portfolio choice under all types of markets, whether they are complete or not.

Beyond our framework, there are also two directions for future work: Firstly and relatively directly, we

can extend the CRRA preference to the more general "stochastic di¤erential utility" proposed by Du¢ e

and Epstein (1992), which is the time continous counterpart of the traditional Epstein and Zin preference

(1989). Chacko and Viceira (2004) uses this general preference to study stock/riskfree allocation problem

in a speci�c setup wth the reciporical of the stock volatility as the state. It remains an interesting problem

to embed this generalized preference into our general framework and to apply it to some other speci�c

setups.

In the real world, asset price determination and asset allocation are actually one problem because they

always interwine with each other: price changes generate di¤erent demands (allocations) and di¤erent

allocations drive prices up and down. In the academic world, however, we always assume exogenous price

processes with respect to asset allocation45 when studying portfolio choice problem; On the other hand,

asset allocation is always ignored when we study endogeneous asset prices.46 Hence the second and much

more di¢ cult direction is to go beyond our partial equilbrium framework to study the portfolio choice

problem in a general equilibrium framework that will gives us a complete understanding of the interaction

between price dynamics and investor�s portfolio choice.
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Table 1: The calibration of Merton (1971) model with price jumps

Panel A
�+ �U � r

p
�2 + �U2  � U r

8% 20% 3 :05 -20% 1%

Panel B
� �2 � ��r

�2
�
�2 (1 + �U)

�U

0.0950 0.0375 0.6557 0.7895 -0.1337

Table 2: the temporary calibration of the stochastic variance model with three types of jumps

Panel A
(� + �sXs + �X) �V

p
(1 + �sXs2 + �X2) �V r  � � � � � Y v�v � Y �

8% 20% :01 3 :02 -.57 :38 5:3

Panel B
�s �V �v �V � �V Xs X Y Y v
:05
3

:05
3

:05
3 -50% -50% (50%)2- �V (50%)2- �V

Panel A
�s �v � �V Y v Y � � �
0.4310 0.4310 0.4310 0.0387 0.2113 0.2113 2.2396 0.2051 5.4821
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Table 3: The calibration of stochastic variance model with the US �nancial data

Panel A
(� + �sXs + �X) �V

p
(1 + �sXs2 + �X2) �V r  � � � � � Y v�v � Y �

7:39% 18:73% .0103 3 :02 -.57 :38 5:3

Panel B
�s �V �v �V � �V Xs X Y Y v
9
79 0 4

79 -16.4706% -24.1362% 0.3875 0

Panel C
�s �v � �V � � �
3.3623 0 1.4944 0.0340 3.0880 0.1802 5.8791

Table 4: The summary of jumps for the US stock market from Jan. 1926 to Dec. 2004

event month p-jump size % volatility % v-jump or not v-jump size if Y X2 � (18.73%)2
19291031 -20.2680 38.70 N - 0.1147
19300630 -15.9399 37.5349 N - 0.1058
19300930 -13.6689 25.0049 N - 0.0274
19310930 -29.2051 47.8378 Y 0.1938 0.1938
19311231 -13.5947 32.5526 N - 0.0709
19320430 -18.1177 39.4356 N - 0.1204
19320531 -20.2333 74.4602 Y 0.5194 0.5194
19370930 -14.7938 28.4111 N - 0.0456
19380331 -24.3750 49.0813 Y 0.2058 0.2058
19400531 -22.7300 39.4673 N - 0.1207
19800331 -13.6147 24.30 N - 0.0240
19871030 -22.7168 81.61 Y 0.6309 0.6309
19980831 -15.6081 29.62 N - 0.0527
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Table 5: The recalibration of the two jump misspeci�cation cases.
In Panel A, variance always jump together with the price; In Panel B, there is no variance jump

Panel A
�s �V � �V Xs X Y � �V
0 13

79 0 -18.8292% 0.1717 5.4106 0.0342

Panel B
�s �V � �V Xs X Y �s �V
13
79 0 -18.8292% 0 0 5.4106 0.0342

Table 6: the calibration of the model with stochastic equity premium as the state

Panel A
(1 + �sXs + �X) �Z

p
(�2 + �sXs2 + �X2) �Z r  � �

p
(�z2 + �zY z2 + �Y 2) �Z �

7:39% 18:73% .0103 3 :02 .977 20:26% 1.6606

Panel B
�s �Z �z �Z � �Z Xs X Y Y z

0 0 13
79 0 -18.8292% 0 0

Panel C
�s �z � �Z �2 �z2 �
0 0 1.5689 0.1049 0.2788 0.3357 15.5349
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Figure 1: the aggregate demand for stocks under six cases for the temporary calibration of the stochastic
variance model.
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Figure2: the de�ator, eB�Y ; as a function of horizon for di¤erent sizes of variance-jumps
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Figure 3: the asymmetric e¤ect of arrival intensity and jump size on the portfolio weight.

30



Figure 4: The implications of stochastic variance model for di¤erent �s
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Figure 5: The implications of stochastic variance model for di¤erent �s
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Figure 6: The implications of stochastic variance model for di¤erent �s
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Figure 7: the aggregate demand under alternate calibrations when the stock price drops by 50% and
stock variance rises up to 70% under various parameter values.
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Figure 8: the di¤erence between our original model and the two jump-misspeci�cation models for the
aggregate demand and its three hedging componets.
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Figure 9: the e¤ect of jump-misspeci�cations on the aggregate demand for di¤erent s:
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Figure 10: the large e¤ect of jump-misspeci�cations on the aggregate demand under certain parameter
values.
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Figure 11: the implications of the model with the stochastic equity premium as the state.
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