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This paper presents three procedures for testing specifications of regression
models. The first procedure is parametric and it tests the specification of
an unconditional moment restriction model against a nonnested unconditional
moment restriction model. The second procedure is nonparametric and it tests
the specification of a conditional moment restriction model against a nonnested
conditional moment restriction model. The third procedure also is nonpara-
metric but it tests the specification of a conditional moment restriction model
against all alternative specifications. All procedures permit heteroskedasticity
of unknown form and are shown to be consistent. The test statistics of the first
two procedures are simply the t-ratios of a 2SLS estimator while that of the
third procedure is computable from LS output via auxiliary LS regressions.
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1. INTRODUCTION

Economic theory relates economic variables but rarely provides a func-
tional form. In practice, linear, loglinear, semi-loglinear, and trans-loglinear
forms are commonly used. However, if these functional forms misspecify
the true relationship, parameter estimates will generally be inconsistent.
Thus, it is important to subject the model to evaluation. Several pro-
cedures for testing functional forms have been proposed.1 Most of those
procedures compare the regression model y = f(x, β0) + u with another

* I would like to thank Dave Denslow, Charlie Hadlock, and Jeffrey Wooldridge for
useful comments.

1Examples include Godfrey and Wickens (1981), Utts (1982), MacKinnon, White, and
Davidson (1983), Davidson and Mackinnon (1981, 1985), Wooldrige (1991, 1992, 1994),
De Jong and Bierens (1994), Hong and White (1996), and Fan and Li (1996). For a list
of other references, see Godfrey, McAleer, and McKenzie (1988).
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regression model φ(y) = q(x, α0) + ε, while the other procedures test the
specification of the regression model y = f(x, β0) + u against all alterna-
tive specifications. All those procedures focus on conditional mean spec-
ifications and require the regressors be exogenous. However, in empirical
studies, regressors often are endogenous and models often are specified as
conditional moment restrictions (see Dadkhah and Valbuena (1985) and
Hansen and Singleton (1982) for examples). The main objective of this pa-
per is to extend the existing test procedures to general regression models.
Specifically, we present test procedures for testing a conditional moment
restriction model:

E{g(z, β0)|x} = 0 for some β0 ∈ B with probability one, (1)

against a nonnested conditional moment restriction model:

E{h(z, α0)|x} = 0 for some α0 ∈ A with probability one, (2)

where g(.) and h(.) are two (possibly nonlinear) functions of known form
and α0 and β0 are the true values of vector-valued unknown parameters.2

The vector-valued z and x denote observed data and x may or may not
overlap with z.3 The variables x can be interpreted as instrumental vari-
ables so that the variables z are permitted to correlate with the residuals.

We present three testing procedures. The first procedure is for testing a
weaker version of (1) against (2). Let w denote a vector-valued function of
x. (1) and (2) imply

E{g(z, β0)w} = 0 for some β0 ∈ B, (1′)
E{h(z, α0)w} = 0 for some α0 ∈ A. (2′)

The first procedure is for testing (1′) against (2′). This procedure is para-
metric when the dimension of w is fixed and independent of sample sizes.
The second procedure is the same as the first one but allows the dimension
of w to grow with sample size. This procedure is nonparametric and it is
for testing (1) against (2). The third procedure also is nonparametric but
it tests the validity of (1) against all alternative specifications.

The first two tests are closely related to those of Davidson and Mackinnon
(1981, 1985) and Mackinnon, White, and Davidson (1993), and Wooldridge
(1994) and can be viewed as conditional moment tests of Newey (1985) and
Tauchen (1985). But, unlike those tests, the proposed tests: are applicable
to more general conditional moment models; permit heteroskedasticity of

2Extensions to the case where g(.) and h(.) are vector-valued functions are described
in the discussion following Theorem 1.

3All vectors in this paper refer to column vectors.



CONSISTENT SPECIFICATION TESTS FOR REGRESSION MODELS 3

unknown form; and allow the number of moment restrictions to grow with
sample size. By allowing the dimension of w to grow with sample size, we
obtain a consistent test for (1) against (2). The existing tests, on the other
hand, are not always consistent. Our third test is closely related to those of
De Jong and Bierens (1994) and Hong and White (1996). In both studies,
conditional expectations are estimated by series estimators and the number
of terms in the series approximations are then allowed to grow with sample
size to assure that the approximation errors are zero in the limit. Neither
studies address the heteroskedasticity issue explicitly, though the test of De
Jong and Bierens is heteroskedasticity robust. Our test, on the other hand,
addresses the heteroskedasticity issue explicitly, thereby is more powerful.

As indicated earlier, the framework (1) - (2) encompasses many of the
testing problems studied in the literature. To see this specifically, consider
testing a linear specification y = x′1β0 + u against a loglinear one ln(y) =
x′2α0 + ε. With x as the union of x1 and x2 and with z as the union of
y and x, (1) and (2) are satisfied with g(z, β0) = y − x′1β0 and h(z, α0) =
ln(y)−x′2α0. As a second example, consider testing the linear specification
against the more general model of Box and Cox (1964). (1) and (2) are
satisfied with g(z, β0) = y− x′1β0 and h(z, α0) = yλ0 − x′2α0, where λ0 is a
coefficient to be chosen by researchers or estimated from data. As a third
example, consider testing the model y = x′1β0+u against the nonparametric
alternative y = E{y|x}+ ε. Then (1) is satisfied with g(z, β0) = y − x′1β0

if and only if x′1β0 is the correct specification of E{y|x}.
The paper is organized as follows: Section 2 introduces and discusses the

first test procedure, Section 3 introduces and discusses the second proce-
dure, Section 4 introduces and discusses the third procedure, and Section
5 concludes the paper. Omitted proofs are relegated to Appendix B.

2. PARAMETRIC PROCEDURE

To motivate the first two testing procedures, we apply the well-known
artificial nesting approach (Atkinson (1970) and Quandt (1974)). Nest (1)
and (2) in a larger model:

E{(1− δ0)g(z, β0) + δ0h(z, α0)|x} = 0 with probability one,

which writes

g(z, β0) = δ0(h(z, α0)− g(z, β0)) + η, (3)

where the disturbance η satisfies E{η|x} = 0 under both (1) and (2) but
the true value δ0 satisfies δ0 = 0 under (1) and δ0 = 1 under (2) respec-
tively. The models (1) and (2) and the models (1′) and (2′) can be tested
by checking whether δ0 = 0 or δ0 = 1. We will estimate δ0 from (3) and
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check its significance. However, as noted in the literature, (3) alone cannot
identify all parameters.4 To resolve this identification problem, we follow
Davidson and MacKinnon (1981) by estimating β0 from model (1) and es-
timating α0 from model (2) using some sensible estimation methods. For
example, β̂ and α̂ could be the GMM estimators of models (1) and (2) re-
spectively.5 It then follows from Hansen (1982) that, under some regularity
conditions, α̂ and β̂ converge to some limits α∗ and β∗ respectively at rate√

N , where the limits satisfy: β∗ = β0 under (1) and α∗ = α0 under (2).
The estimators α̂ and β̂ do not have to be the GMM estimators but they
must satisfy:

Assumption 2.1.
√

N(α̂− α∗) = Op(1) and
√

N(β̂ − β∗) = Op(1).

Replacing α0 and β0 with the estimators, we obtain:

g(z, β̂) = δ0(h(z, α̂)− g(z, β̂)) + η̂, (4)

where η̂ is the sum of η and the errors resulted from substituting α̂ and β̂
for α0 and β0. Our test procedures are based on the model:

g(z, β̂) = gβ(z, β̂)′λ0 + δ0(h(z, α̂)− g(z, β̂)) + η̂, (5)

where gβ(.) denotes the first derivatives of g(.) with respect to β and the
true value λ0 = 0 holds under both (1) and (2). The first derivative term
is used to purge the effects of α̂ and β̂.

Since the right-hand side regressors in (5) may be correlated with the
residuals, we estimate λ0 and δ0 by 2SLS using w as instruments. We then
test δ0 = 0 using the t-ratio of the 2SLS estimator of δ0. Let (zi, xi) for
i = 1, 2, · · · , N denote sample realizations of (z, x) satisfying:

Assumption 2.2. (zi, xi) for i = 1, · · · , N are i.i.d..

Denote sample realizations of w by wi. Let Γ̂ and γ̂ denote the OLS es-
timators from regressing gβ(zi, β̂) and h(zi, α̂)−g(zi, β̂) on wi respectively.
Let hα(z, α) denote the first derivative with respect to α and let gββ(z, β)
denote the second derivatives with respect to β. Let βj denote the j-th
element of β. Suppose that the following condition holds:

Assumption 2.3. (i) N−1

N∑
i=1

wiw
′
i is nonsingular and E{ww′} is pos-

itive definite;

4See Gourieroux and Monfort (1994, p. 2611).
5The GMM estimators can be obtained with little programming effort in TSP. All

you need to do is to provide the moment function g(z, β) or h(z, α) and the instruments
w. TSP then computes the estimates and the standard errors.
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(ii) E{supβ∈B |gβ(z, β)w′|}, E{supα∈A |hα(z, α)w′}, and
E{supβ∈B |gββj(z, β)w′|} for all j are finite.

Then Γ̂ and γ̂ converge to Γ∗ = E{gβ(z, β∗)w′}E{ww′}−1 and γ∗ =
E{ww′}−1E{w(h(z, α∗)−g(z, β∗))} respectively in probability at rate

√
N

(see Lemma B.1 of Appendix B).
Let θ̂ denote the OLS estimator from regressing w′

iγ̂ on Γ̂wi. θ̂ converges
to θ∗ = (Γ∗E{ww′}Γ∗′)−1Γ∗E{ww′}γ∗ in probability at rate

√
N (Lemma

B.1) if the following condition holds:

Assumption 2.4. N−1

N∑
i=1

Γ̂wiw
′
iΓ̂′ is nonsingular and Γ∗E{ww′}Γ∗′ is

positive definite.

The 2SLS estimator δ̂ is given by

δ̂ =

{
N∑

i=1

(w′
1γ̂ − (Γ̂wi)′θ̂)2

}−1 N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)g(zi, β̂).

Clearly, N−1

N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2 must be nonzero for all N and converge

to a positive constant E{(w′γ∗ − (Γ∗w)′θ∗)2} in probability. The constant
E{(w′γ∗ − (Γ∗w)′θ∗)2} is positive if and only if the following condition
holds:

Assumption 2.5. γ∗ 6= Γ∗′θ∗.

We now state other conditions. Define u = g(z, β∗) and ε = h(z, α∗).
Denote sample realizations of u and ε by ui and εi respectively.

Assumption 2.6. E{u2|x} and E{u4|x} are bounded and bounded away
from zero uniformly over x.

Assumption 2.7. For given z, g(z, β) and h(z, α) are continuous and
twice continuously differentiable with respect to α and β.

Assumption 2.2 rules out dependent data but it can be weakened to per-
mit time series data (see the discussion following Theorem 1). Assumption
2.3(i) rules out multicollinearity. This condition is always imposed in the
regression literature. Assumption 2.3(ii) is a stochastic dominance condi-
tion. This condition is often imposed in the nonlinear econometric litera-
ture to assure uniform convergence. Assumption 2.6 is needed for proving
consistency of the White heteroskedasticity covariance matrix while As-
sumption 2.7 is needed for linearizing g(z, β̂) and h(z, α̂). Assumptions 2.4
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and 2.5 assure that the 2SLS estimator δ̂ is well-defined. Assumption 2.5
requires that (1′) and (2′) be intrinsically nonnested in the sense that they
do not hold simultaneously.6 Though difficult to verify, this condition can
be tested using the estimator γ̂ − Γ̂′θ̂ which is asymptotically normal with
mean zero if Assumption 2.5 is not satisfied. For instance, a Chi-square
type of test can be constructed. 7

Under these conditions, we show that
√

Nδ̂ is asymptotically normal with
mean zero and variance σ2

δ = (E{(w′γ−w′Γ′θ)2})−2(E{(w′γ−w′Γ′θ)2u})
under (1′). Following White (1980), a consistent estimator for σ2

δ is given
by

σ̂2
δ =

{
N−1

N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2

}−2{
N−1

N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2û2

i

}
, (6)

where ûi = g(zi, β̂) or ûi = g(z, β̂)− gβ(z, β̂)′λ̂− δ̂(h(z, α̂)− g(z, β̂)). Both
estimated residuals are consistent for the true residual ui, but the latter is
used in computing the variance when the TSP 2SLS procedure is applied
to (5) and the Robust option is requested. The t-ratio t̂ =

√
Nδ̂/σ̂δ is

then asymptotically standard normal under (1′). Under (2′), we show that
t̂ converges to +∞. Thus, a one-sided test is consistent for testing (1′)
against (2′). We summarize these results in a theorem.

Theorem 2.1. Under Assumptions 2.1 - 2.7 the t-ratio t̂: (i) is asymp-
totically standard normal under (1′); and (ii) converges to +∞ in proba-
bility under (2′).

Smith (1992) also proposed a test for (1′) against (2′). Let ĝN and
ĥN denote the sample averages of g(zi, β̂)wi and h(zi, α̂)wi respectively.
Smith’s test statistic (Smith (1992, pp. 975, equation (2.6)) is ĝ′NŴ ĥN ,
where Ŵ is an estimator of some matrix. Note that ĝN → 0 in probability
under (1′) and ĥN → 0 in probability under (2′). We have ĝ′NŴ ĥN → 0 in
probability under both (1′) and (2′). This is in contrast with the proposed
test which has divergent limits. Thus, our test is more likely to reject (1′)
when (2′) is true than Smith’s test.

The proposed test is in fact a test for E{uw} = 0. Thus, it can be
viewed as a conditional moment test of Newey (1985) and Tauchen (1985).
It differs from their tests in that in our test: (i) α̂ and β̂ can be any sensible
estimators; (ii) these estimators do not affect the asymptotic distribution
of the proposed test statistic; and (iii) the proposed test statistic is just

6This follows because, if (1′) and (2′) hold simultaneously, γ∗ (and hence θ∗) is zero.
7Derivation of this test is straightforward and shall not be done here to conserve space.
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the t-ratio of the 2SLS estimator provided that White heteroskedasticity
consistent covariance matrix is computed.

For dependent but stationary time series data, the 2SLS estimator
√

Nδ̂
under (1′) is still asymptotically normal but its standard errors will be in-
correctly estimated. Consequently, the proposed test statistic t̂ is asymp-
totically normal but not standard normal. But, if the Newey- West auto-
correlation and heteroskedasticity consistent covariance matrix is used to
compute the standard error of the 2SLS estimator, Theorem 1 still holds.8

Theorem 2.1 can be easily extended to the case of multiple alternatives.
To see this, suppose that the true model when (1′) is rejected is one of the
following:

E{hj(z, αj0)w} = 0 for j = 1, 2, · · · , J.

Then the counterpart of (5) is

g(z, β̂) = gβ(z, β̂)′λ0 +
J∑

j=1

δj0(hj(z, α̂j)− g(z, β̂)) + η̂, (7)

where α̂j are some
√

N−consistent estimators for αj0. (1′) is true if and
only if all δj0 = 0. Apply 2SLS to (7). The 2SLS estimators δ̂j → 0 for
all j under (1′) and at least one δ̂j converges to some nonzero constant
under (7). Let δ̂ = (δ̂1, · · · , δ̂J)′ and let V̂ denote the covariance matrix
of δ̂. Then δ̂′V̂ −1δ̂ has a central Chi-Square distribution with degrees of
freedom J under (1′) and a noncentral Chi-Square distribution if (1) does
not hold.

Theorem 2.1 also can be extended to the case of a simultaneous equa-
tions system. Consider testing the null: E{gm(zi, βm0)w} = 0 for m =
1, 2, · · · ,M against the alternative: E{hm(z, αm0)w} = 0 for m = 1, 2, · · · ,M .
Let β̂m and α̂m denote some

√
N−consistent estimators of βm0 and αm0

respectively. Let gmβ(.) denote the derivatives with respect to β. Then,
(5) becomes

gmβ(z, β̂m) = gm(z, β̂m)′λ0 + δm0(hm(z, α̂m)− gm(z, β̂m)) + η̂m. (8)

Apply 3SLS to (8) and save the covariance V̂ of the 3SLS estimators δ̂ =
(δ̂1, · · · , δ̂M )′. Then δ̂′V̂ −1δ̂ has a central Chi-Square distribution with
degree of freedom M under the null and noncentral Chi-Square distribution
under the alternative.

8The Newey-West covariance matrix requires extra programming effort.
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3. NONPARAMETRIC PROCEDURE I

The proposed test, though consistent for (1′) against (2′), is not consis-
tent for (1) against (2). This is because (1′) and (2′) do not imply (1) and
(2). To assure consistency of the test for (1) against (2), we must allow the
dimension of w to increase with sample size so that (1′) and (2′) are equiva-
lent to (1) and (2) in the limit. In other words, we must assure that Γ∗w and
w′γ∗ approximate E{gβ(z, β∗)|x} and E{h(z, α∗)−g(z, β∗)|x} respectively
arbitrarily well. To accomplish this, we need to be specific about w. Let
{as(x), s ≥ 1} denote a prespecified family of base functions.9 This can be
any family of functions satisfying the conditions below. There are no other
restrictions on these base functions other than that they must be dense in
a functional space. For some integer k, define w = (a1(x), · · · , ak(x))′.10

We now study the limiting behavior of the t- ratio of Section 2 when k
tends to infinity as N tends to infinity.

As k increases with N , the number of parameters in γ∗ and Γ∗ also
increases with N . This implies that γ̂ and Γ̂ cannot be

√
N consistent.

However, we will show that Γ̂w and w′γ̂ converge to E{gβ(z, β∗)|x} and
E{h(z, α∗)− g(z, β∗)|x} respectively at rate op(N−1/4). Moreover, we will
show that θ̂ is still

√
N consistent (Lemma B.4). This implies that, with

f(x) = E{h(z, α∗)− g(z, β∗)− g(z, β∗)− gβ(z, β∗)′θ∗|x},

N−1
N∑

i=1

(w′
iγ̂ − (Γwi)′θ̂)2 = E{f(x)2}+ op(1).

We also will show that, under (1),
√

Nδ̂ is asymptotically normal with
mean zero and variance: σ2

δ = (E{f(x)2})−2E{f(x)2u2}, which can be
estimated consistently by the estimator σ̂2

δ defined in (6). Thus, the t-ratio
t̂ is still asymptotically standard normal under (1). Under (2), t̂ converges
to +∞.

To assure these results, we must impose all assumptions of Section 2 with
Assumption 2.5 now replaced by:

Assumption 3.1. E{h(z, α∗)|x} is not a linear combination of
E{gβ(z, β∗)|x} and E{g(z, β∗)|x}.

In addition, we also impose conditions on the base functions and on
the number of base functions used in the approximations. Let R1k(x) =
E{h(z, α∗)−g(z, β∗)|x}−w′γ∗ and R2k(x) = E{gβ(z, β∗)|x}−Γ∗w, where
γ∗ and Γ∗ are now the coefficients in the series approximations. Define
ν1i = h(zi, α

∗)−g(zi, β
∗)−E{h(z, α∗)−g(z, β∗)|xi} and ν2i = gβ(zi, β

∗)−

9Examples of the family of functions include the polynominal, trigonometric and FFF
families.

10Clearly, w depends on k. We omit the argument k for convenience.
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E{gβ(z, β∗)|xi}. Let |.| denote the absolute value operator. For any matrix
Ai, suppose that |Ai|, maxj≤N{|Ai|}, and As

i for any integer s are element
by element operations.

Assumption 3.2. maxi≤N E{ν2
1i|xi} = Op(1) and maxi≤N E{ν2

2i|xi} =
Op(1).

Assumption 3.3. (i) k → +∞ as N → +∞; (ii) k/
√

N → 0.

Assumption 3.4.
√

N supx{|R1k(x)|} → 0 and
√

N supx{|R2k(x)|} → 0
as N → +∞.

Assumption 3.1 requires that h(z, α∗) must not be a local approxima-
tion to h(z, β∗). It also requires that (1) and (2) must be intrinsically
nonnested in the sense that the probability of the event: E{g(z, β∗)|x} = 0
and E{h(z, α∗)|x} = 0 is less than one. Assumption 3.2 permits het-
eroskedasticity but requires that the variances are bounded. Assumption
3.3 imposes an upper bound on the number of instruments while Assump-
tion 3.4 imposes a lower bound. These conditions require that k be large
enough to kill the bias in the series approximations but not large enough
to increase the variance of the 2SLS estimator. Under these conditions, we
show:

Theorem 3.1. Under Assumptions 2.1 - 2.4, 2.6 - 2.7, and 3.1 - 3.4, the
t-ratio t̂:(i) is asymptotically standard normal under (1); and (ii) converges
to +∞ in probability under (2).

Theorem 3.1 extends the results of Theorem 2.1 to the case where the
number of instruments (k) increases with sample sizes. It shows that the
one-sided t-test proposed earlier is consistent for (1) against (2). This result
generalizes those of Davidson and Mackinnon (1981, 1985) and Wooldridge
(1994) to the more general conditional moment setting.

Although the second test is theoretically better than the first one, in
practice both tests use the ratio of the 2SLS estimator and hence are iden-
tical. Both tests improve upon the existing tests. To see this, consider the
case: g(z, β0) = y− f(x, β0) and h(z, α0) = y− q(x, α0). Equation (5) now
becomes:

y − f(x, β̂) = fβ(x, β̂)′λ0 + δ0(f(x, β̂)− q(x, α̂)) + η̂.

Since fβ(.) and f(.) − q(.) are uncorrelated with η, they can be used as
instruments. With w = (fβ(x, β̂)′, f(x, β̂) − q(x, α̂))′, 2SLS is identical to
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OLS and t̂ is the t-ratio of the OLS estimator of δ0. In this case, our test
is identical to the P -test suggested by Davidson and MacKinnon (1981).

As a second example, consider the case: g(z, β0) = y − f(x, β0) and
h(z, α0) = ϕ(y)− q(x, α0), where ϕ(.) is known. Then (5) becomes.

y − f(x, β̂) = fβ(x, β̂)′λ0 − δ0(ϕ(y)− y + f(x, β̂)− q(x, α̂)) + η̂. (9)

Since fβ(x, β̂) is uncorrelated with η, it can be used as instrument. The
second regressor in (9) is correlated with η, so 2SLS is called for. The
PE-test proposed by MacKinnon, White and Davidson (1985) is based on

y − f(x, β̂) = fβ(x, β̂)′λ0 + δ0(ϕ(f(x, β̂))− q(x, α̂)) + η̂.

Their test statistic is the t-ratio of the OLS estimator of δ0. As Wooldridge
(1994) pointed out, the PE-test is generally inconsistent because, by Jensen’s
inequality, E{ϕ(y)|x} 6= ϕ(E{y|x}) under (2). Wooldridge modified the
PE-test by assuming that E{y|x} = τ0ϕ

−1(E{ϕ(y)|x}) under (2). His
testing procedure is based on:

y − f(x, β̂) = fβ(x, β̂)′λ0 + δ0(f(x, β̂)− τ̂ϕ−1(q(x, α̂))) + η̂, 11

where τ̂ is the OLS estimator of regressing y on ϕ−1(q(x, α̂)). The Wooldridge
test is consistent under his condition. However, we argue that not all dis-
tributions satisfy his condition. In particular, his condition may not be
satisfied if y is heteroskedastic. Besides, his test does not apply to the case
of endogenous regressors.

As a third example, consider testing the fixed-effects panel regression
model:

yit = x′1itβ0 + µi + uit, for i = 1, 2, · · · , N ; t = 1, 2, (10)

against the nonnested fixed effects panel regression model:

ϕ(yti) = x′2itα0 + νi + εit, for i = 1, 2, · · · , N ; t = 1, 2, (11)

where the variables µi and νi denote individual effects. Let xit denote the
union of x1it and x2it. Suppose that the disturbances satisfy E{uit|xit} = 0
and E{εit|xit} = 0. Because of the presence of the individual effects, the
proposed test procedures cannot be applied to (10)-(11) directly. Instead,
we first eliminate the individual effects through differencing:

∆yi2 = ∆x′1i2β0 + ∆ui2, (12)
∆ϕ(yi2) = ∆x′2i2α0 + ∆εi2, (13)

11For details on the Wooldrige test, see Wooldridge (1994).
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where ∆ is the first difference operator. We then apply our procedure to
(12) - (13). The counterpart of (5) is:

∆(yi2−x′1i2β̂) = ∆x′1itλ0 + δ0∆(ϕ(yi2)−x′2i2α̂−yi2 +x′1i2β̂)+∆ηi2. (14)

Note that E{uit|xit} = 0 and E{εit|xit} = 0 do not necessarily imply
E{∆uit|∆xit} = 0 and E{∆εit|∆xit} = 0. This is because xit may in-
clude lagged dependent variables. Thus, Davidson and Mackinnon test
and Wooldridge test do not apply. But if we assume E{∆ui2|xi1} = 0 and
E{∆εi2|xi1} = 0, we have E{∆ηi2|xi1} = 0. So (14) can be estimated
by 2SLS with xi1 as instruments. If xi1 cannot be used as instruments,
external instruments are then called for.

4. NONPARAMETRIC PROCEDURE II

The proposed test in Section 3, though consistent for (1) against a partic-
ular alternative model (2), is not consistent against all alternative specifi-
cations. We now present a test that is consistent for (1) against all alterna-
tives. The test is closely related to those of De Jong and Bierens (1994) and
Hong and White (1996) and is based on E{(u/σ(x))E{(u/σ(x))|x}}, where
u = g(z, β∗) and σ(x)2 = E{u2|x}. Note that E{(u/σ(x))E{(u/σ(x))|x}} =
0 if (1) holds and E{(u/σ(x))E{(u/σ(x))|x}} > 0 if P{E{u|x} 6= 0} > 0.
A consistent test can be constructed using the sample average:

N∑
i=1

(ui/σ(xi))E{ui/σ(xi))|xi}.

The residuals ui are unknown and shall be estimated by g(zi, β̂) The vari-
ance also is unknown and shall be estimated by the fitted values of regress-
ing g(zi, β̂)2 on w1i, where w1i = (a1(xi), · · · , ak1(xi))′. Let σ̂(xi)2 denote
the fitted values. σ̂(xi)2 is not guaranteed to be positive. Hence, some sort
of trimming is necessary. Define

sb(µ) = 1
√

µ for µ > b; sb(µ) = 3.5∗µ2/b2.5 − 2.5∗µ3/b3.5 for 0 ≤ µ ≤ b;
and sb(µ) = 0 for µ < 0.

Then sb(µ) is an approximation of 1/
√

µ. Clearly, sb(µ) controls small
values of and trims negative values of µ. It can be verified that sb(µ) has
first continuous derivative with respect to µ. Moreover, |sb(µ)| = O(1/

√
b)

and |s′b(µ)/dµ| = O(1/b1.5), where s′b(µ) denotes the first derivative with
respect to µ. We now estimate ui/σ(xi) by g(zi, β̂)sb(σ̂(xi)2).

Next, we estimate E{ui/σ(xi)|xi} by the fitted values of regressing
g(zi, β̂)sb(σ̂(xi)2) on wi. Let Ê{g(z, β̂)sb(σ̂(x)2|xi} denote the fitted val-
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ues. Then, our test statistic is given by:

r̂ =
N∑

i=1

g(zi, β̂)sb(σ̂(xi)2)Ê{g(z, β̂)sb(σ̂(x)2)|xi}.

We shall show that, under some conditions, (r̂ − k)/
√

2k is asymptot-
ically standard normal under (1). When (1) does not hold, we show
(r̂ − k)/

√
2k → +∞ in probability.

Conditions that assure these asymptotic results are those imposed in
Section 2 and Section 3 as well as those on the series approximation of
σ(x2) = E{g(z, β∗)2|x}. Let w′

1γ
∗
s denote the series approximation of

E{g(z, β∗)2|x} and let Rsk1(x) = E{g(z, β∗)2|x} − w′
1γ

∗
s denote the ap-

proximation error. Let ν3i = g(zi, β
∗)2 − E{g(z, β∗)2|xi}. Let w′γ∗4 de-

note the series approximation of E{g(z, β∗)/σ(x)|x} and let R4k(x) =
E{g(z, β∗)/σ(x)|x} − w′γ∗4 denote the approximation error. Let ν4i =
g(zi, β

∗)/σ(xi) − E{g(z, β∗)/σ(x)|xi}. The following conditions shall be
imposed:

Assumption 4.1. (i) k → +∞ and N/
√

k → +∞ as N → +∞; (ii)
N∑

j=1

wjw
′
j is nonsingular; (iii) supi{w′

i(
N∑

j=1

wjw
′
j)
−1wi} → 0 as N → +∞;

and (vi) E{u4/σ(x)4} is finite.

Assumption 4.2. (i) b → 0, kb6∞ +∞, and k1 → +∞ as N → +∞;
(ii) k1/

√
kb6 → 0; (iii) supx{R3k1(x)2}∗N/

√
kb6 → 0 as N → +∞; and

(vi) supx{R4k(x)2} → 0 as N → +∞.

Assumption 4.3. (i) E
{
supβ∈B{g(z, β)2|x}

}
is bounded;

(ii) E
{
supβ∈B{gβ(z, β)gβ(z, β)′}

}
is finite;

(iii) maxi

{
E{ν2

si|xi}
}

= Op(1); and
(vi) maxi

{
E{ν2

4i|xi}
}

= Op(1).

Assumption 4.1 is the same as Assumptions A.5(a,b), A.7 and A.8 of
Hong and White (1996). This assumption is sufficient for the central limit
result:( N∑

i=1

uiw
′
i/σ(xi)

) N∑
j=1

wjw
−1
j

(
N∑

i=1

uiwi/σ(xi)

)
− k

 /
√

2k
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is asymptotically standard normal (Hong and White (1996), Proposition
2.3). Assumption 4.2 imposes conditions on the series estimator of the
variance function. Part (i) requires an infinite series be used to approximate
the variance function. Part (ii) requires the dimension of w1 grow at a
much slower rate than the dimension of w while part (iii) requires the
approximation error shrink to zero rapidly. Assumption 4.3 is a stochastic
dominance condition. It is needed to show that the estimated variance
function has no effects on the asymptotic distribution of r̂. Under all these
conditions, we have:

Theorem 4.1. Under Assumptions 2.1 - 2.4, 2.6 - 2.7, 3.1 - 3.4, and
4.1 - 4.2, the statistic (r̂ − k)/

√
2k: (i) is asymptotically standard normal

under (1); and (ii) converges to +∞ in probability if (1) does not hold.

The test statistic r̂, though cannot be obtained directly from regression
output, is computable from LS regressions output via auxiliary LS regres-
sions. For instance, the following steps can be followed to obtain r̂:

Step 1. obtain β̂ with any sensible estimation methods;
Step 2. regress g(zi, β̂)2 on w1i, retrieve the fitted values σ̂(xi)2;
Step 3. regress g(zi, β̂)sb(σ̂(xi)2) on wi, retrieve the fitted values
Ê{g(z, β̂)sb(σ̂(x)2)|xi}. The sum of squared fitted values is r̂.

5. CONCLUSION

This paper presents three testing procedures for testing the specifica-
tions of nonlinear regression models. The first two procedures are for
testing nonnested hypotheses while the third one is a consistent test for
a parametric model. All procedures are easy to compute. A common limi-
tation of these procedures is that they all require the null specification be
parametric and the alternative specification be either parametric or com-
pletely nonparametric. Recent developments in the literature have been
in semiparametric and nonparametric models. Thus, an extension of the
proposed tests to the semiparametric or nonparametric null against the
semiparametric or nonparametric alternative would be desirable.

APPENDIX A
Some useful results

In this appendix, we derive some results that will be used to prove Theo-
rems 2 and 3. These results are similar to those of Ai and McFadden (1997,
Lemma A.1). Recall that w = (a1(x), · · · , ak(x))′. For a known function
ϕ(x), let ϕ(x) = w′γ + Rk(x), where w′γ is the series approximation of
ϕ(x) and Rk(x) is the approximation error. Let νi denote sample realiza-
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tions of ν. Suppose that E{νi|xi} = 0. Let φ(z) denote a known function.
Let ϕ̂(xi), Ê{φ(z)|xi} and Ê{ν|xi} denote the fitted values of regressing
φ(xi), φ(zi), and νi respectively on wi.

Lemma A.1. Suppose that (zi, xi, νi) for i = 1, 2, · · · , N are i.i.d.. Then:

(i)
N∑

i=1

(ϕ̂(xi)− ϕ(xi))2 = O(N ∗ sup
x∈χ

{Rk(x)2});

(ii) if maxi≤N E{ν2
i |xi} = Op(1),

N∑
i=1

Ê{ν|xi}2 = Op(k);

(iii) With supx∈χ{Rk(x)2} → 0 as N → +∞,

N−1/2
N∑

i=1

ϕ(xi)Ê{ν|xi} = N−1/2
N∑

i=1

ϕ(xi)νi + op(1);

(iv) suppose that k/
√

N → 0 and
√

N ∗ supx∈χ{(Rk(x))2} → 0 as
N → +∞. We obtain:

N−1/2
N∑

i=1

ϕ(zi)Ê{ν|xi} = N−1/2
N∑

i=1

E{ϕ(z)|xi}νi + op(1);

Proof. Define W = (w1, w2, · · · , wN )′ and P = W (W ′W )−1W ′. Let

Pij denote the (i, j)-th element of P . Then
N∑

i=1

Pii = k. Part (i) follows

from:

N∑
i=1

(ϕ̂(xi)− ϕ(xi))2 =
N∑

i=1

Rk(xi)2 ≤ N ∗ sup
x∈χ

{Rk(x)2}.

Part (ii) follows from:

E

{
N∑

i=1

Ê{ν|xi}2
}

= E


N∑

i=1

N∑
j=1

νiνjPij

 = E

{
N∑

i=1

E{ν2
i |xi}Pii

}

≤ E
{

max
i

E{ν2
i |xi}

}
k.
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To prove part (iii), write

N−1/2
N∑

i=1

ϕ(xi)Ê{ν|xi} = N−1/2
N∑

i=1

(ϕ̂(xi)νi

= N−1/2
N∑

i=1

(ϕ̂(xi)− ϕ(xi))νi + N−1/2
N∑

i=1

ϕ(xi)νi.

Note that

E
{

[N−1/2
N∑

i=1

(ϕ̂(xi)−ϕ(xi))νi]2
}

=E
{

N−1
N∑

i=1

(ϕ̂(xi)−ϕ(xi))2
}

max
i

E{ν2
i |xi},

which converges to zero by part (i) if supx∈χ{Rk(x)2} → 0 as N → +∞.
To prove part (iv), write

N−1/2
N∑

i=1

φ(zi)Ê{ν|xi} = N−1/2
N∑

i=1

(φ̂(zi)− E{φ(z)|xi})Ê{ν|xi}

+ N−1/2
N∑

i=1

E{φ(z)|xi}Ê{ν|xi}.

Note that φ(z) = E{φ(z)|x}+ν and E{ν|x} = 0. With ϕ(x) = E{ϕ(z)|x},
applying part (i) and (ii) gives

N−1/2
N∑

i=1

(φ̂(zi)− E{φ(z)|xi})2 = Op(max{k, N sup
x∈χ

{Rk(x)2}}/
√

N),

which converges to zero if k/
√

N → 0 and
√

N supx∈χ{Rk(x)2} → 0.
Write

N−1/2
N∑

i=1

E{φ(z)|xi}Ê{ν|xi} = N1/2
N∑

i=1

(Ê{φ(z)|xi} − E{φ(z)|xi})νi

+ N−1/2
N∑

i=1

E{φ(z)|xi}νi

Applying part (i) to ϕ(x) = E{ϕ(z)|x} proves N−1/2

N∑
i=1

(Ê{φ(z)|xi} −

E{φ(z)|xi})νi = op(1).
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Parts (i) and (ii) can be used to determine a convergence rate of any
series estimator, while parts (iii) and (iv) can be used to determine the
asymptotic distribution of a series estimator. The difference between (iii)
and (iv) is that in (iii) ? and x are conditional mean independent but in
(iv) z and u may be correlated.

APPENDIX B
Omitted proofs

To prove Theorem 2.1, we first prove some useful lemmas.

Lemma B.1. Suppose that Assumptions 2.1 - 2.4 and 2.7 are satisfied.
Then we can show:

(i)
√

N(Γ̂− Γ∗) = Op(1);
(ii)

√
N(γ̂ − γ∗) = Op(1);

(iii)
√

N(θ̂ − θ∗) = Op(1).

Proof. Recall that Γ̂ = N−1

N∑
i=1

gβ(zi, β̂)w′
1

(
N−1

N∑
i=1

wiw
′
i

)−1

. By As-

sumption 2.2 and the weak law of large numbers, we obtain N−1

N∑
i=1

wiw
′
i =

E{ww′}+ op(1). By Assumption 2.7 and a mean value expansion, we ob-
tain:

N−1
N∑

i=1

gβ(zi, β̂)w′
i = N−1

N∑
i=1

gβ(zi, β
∗)w′

i +N−1
N∑

i=1

gββ(zi, β)(β̂−β∗)w′
i,

where gββ(.) denotes the second derivatives with respect to β and where β

lies between β̂ and β∗. By the Lindeberg-Levy central limit theorem, the
first summation on the right-hand side converges to E{gβ(z, β∗)w′} at rate√

N . By Assumption 2.1, we have:
√

N(β̂−β∗) = Op(1) and
√

N(β−β∗) =
Op(1). Let βj denote the j-th component of β. By Assumption 2.3, we
obtain:

N−1
N∑

i=1

gββj (ziβ)w′
i = E{gββj (zi, β)w′}+op(1) uniformly over β for everyj.
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This implies that N−1

N∑
i=1

gββj
(zi, β)w′

i = E{gββj
(zi, β)w′}+op(1). Hence,

the second summation converges to zero at rate
√

N . This proves part (i).
Parts (ii) and (iii) can be proved using similar arguments.

Lemma B.2. Under Assumptions 2.1 - 2.5 and 2.7, we obtain:

(i) N−1

N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2 = E{(w′γ∗ − w′Γ∗′θ∗)2}+ op(1).

Moreover, if model (1′) holds, we have:

(ii) N−1/2

N∑
i=1

(w′
iγ̂−(Γ̂wi)′θ̂)g(zi, β̂) = N−1/2

N∑
i=1

(w′
iγ
∗−(Γ∗wi)′θ∗)ui+

op(1).

Proof. Part (i) follows immediately from γ̂, Γ̂, and θ̂ being
√

N con-
sistent. To show (ii), Taylor expansion around β̂ to the second order and
noting that ui = g(zi, β

∗), we obtain:

N−1/2
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)ui = N−1/2

N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)g(zi, β̂)

+ N−1/2
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)gβ(zi, β̂)′(β̂ − β∗) (B.1)

+ (β̂ − β∗)′N−1/2
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)gββ(zi, ξ̂)(β̂ − β∗)/2,

where ξ̂ is between β̂ and β∗. Since Γ̂ is the OLS estimator of gβ(zi, β̂) on
wi and θ̂ is the OLS estimator of w′

iγ̂ on Γ̂wi, gβ(zi, β̂)− Γ̂wi is orthogonal
to wi while w′

iγ̂−(Γ̂wi)′θ̂ is orthogonal to Γ̂wi. Thus the second summation
on the right-hand side of (B.1) is zero. The third summation converges to
zero in probability because β̂ converges to β∗ at rate

√
N . Hence, (B.1)

implies

N−1/2
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)g(zi, β̂) = N−1/2

N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)ui + op(1).

(B.2)
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Further, since γ̂, Γ̂ and θ̂ are
√

N consistent and E{wu} = 0 by model (1′),
we obtain:

N−1/2
N∑

i=1

(w′
iγ̂−(Γ̂wi)′θ̂)ui = N−1/2

N∑
i=1

(w′
iγ
∗−(Γ̂wi)′θ∗)ui+op(1). (B.3)

Combining (B.1) - (B.3) proves part (ii).

Lemma B.3. Under Assumptions 2.1 - 2.7 and model (1′), we obtain:

N−1
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2û2

i = E{(w′γ∗ − (Γ̂w)′θ∗)2u2
i }+ op(1).

Proof. Recall that

δ̂ =

{
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2

}−1 N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)g(zi, β̂).

By Lemma B.1 and equation (B.2), δ̂ converges to the true value at rate√
N . Using similar arguments, we also can show that the 2SLS estimator

for λ0 converges to the true value at rate
√

N . This implies that the
estimated residuals ûi = g(z, β̂)− gβ(z, β̂)′λ̂− δ̂(h(z, α̂)− g(z, β̂)) converge
to ui at rate

√
N . These convergence results imply that we can safely

replace Γ̂, γ̂, θ̂, α̂, β̂, δ̂, and λ̂ by their respective limits. Hence,

N−1
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2û2

i = N−1
N∑

i=1

(w′
iγ
∗ − (Γ∗wi)′θ∗)2u2

i + op(1).

Invoking the weak law of large numbers proves the lemma.

Proof of Theorem 2.1
Proof of part (i) Note that E{uw} = 0 under (1′). Applying Lemma B.1

and Lemma B.2 proves that
√

Nδ̂ is asymptotically normal with mean zero
and variance σ2

δ . By Lemma B.2 and Lemma B.3, the estimator σ̂2
δ defined

in (6) is consistent for σ2
δ . Hence t̂ is asymptotically standard normal.

Proof of part (ii) Unless stated otherwise, the derivations below are
obtained under E{wε} = 0, where ε = h(z, α∗). Under (2′), Lemma B.1
and part (i) of Lemma B.2 still hold. Let γ̂1 denote the OLS estimator
obtained by regressing g(zi, β̂) on wi and let θ̂1 denote the OLS estimator
obtained by regressing w′

iγ̂ on Γ̂wi. Then, because h(zi, α̂) converges to εi
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in probability and because E{wiεi} = 0 by model (2′), we obtain γ̂ − γ̂1 =
op(1) and θ̂ − θ̂1 = op(1). This implies

N−1
N∑

i=1

(w′
iγ̂−(Γ̂wi)′θ̂)g(zi, β̂) = N−1

N∑
i=1

(w′
iγ̂1−(Γ̂wi)′θ̂1)g(zi, β̂)+op(1).

(B.4)
Because g(zi, β̂)−w′

iγ̂1 is orthogonal to wi and w′
iγ̂1−(Γ̂wi)′θ̂1 is orthogonal

to Γ̂wi, we obtain:

N−1
N∑

i=1

(w′
iγ̂1−(Γ̂wi)′θ̂1)g(zi, β̂) = N−1

N∑
i=1

(w′
iγ̂1−(Γ̂wi)′θ̂1)2 > 0. (B.5)

By Assumption 2.5, γ̂1−Γ̂′θ̂1 does not converge to zero in probability. Part
(ii) now follows immediately from part (i) of Lemma B.2 and equations
(B.4) - (B.5).

To prove Theorem 3.1, we need to show several lemmas similar to Lem-
mas B.1 - B.3.

Lemma B.4. Under Assumptions 2.1 - 2.4, 2.7, and 3.1 - 3.4, we can
show that

√
N(θ̂ − θ∗) = Op(1).

Proof. Let γ̃ and Γ̃ denote the OLS estimators obtained by regressing
h(zi, α

∗) − g(zi, β
∗) and gβ(zi, β

∗) on wi respectively. Note that the con-
ditions of Lemma A.1 are satisfied by Assumptions 3.2 - 3.4 for φ(z) =
h(z, α∗)−g(z, β∗) and φ(z) = gβ(z, β∗) respectively. Applying Lemma A.1
gives

N−1/2
NX

i=1

(w′
iγ̃ − E{h(z, α∗) − g(z, β∗)|x})2 = op(1); (B.6)

N−1/2
NX

i=1

(Γ̃wi − E{gβ(z, β∗)|x})(Γ̃wi − E{gβ(z, β∗)|x})′ = op(1). (B.7)

Note that the difference between (γ̂, Γ̂) and (γ̃, Γ̃) is that the former use
α̂ and β̂ while the latter use α∗ and β∗. Since α̂ and β̂ are

√
N consistent,

when γ̃ and Γ̃ in (B.6) and (B.7) are replaced by γ̂ and Γ̂ respectively, the
op(1) on the right-hand side must be replaced by Op(1):

N−1/2
NX

i=1

(w′
iγ̂ − E{h(z, α∗) − g(z, β∗)|xi})2 = Op(1); (B.8)

N−1/2
NX

i=1

(Γ̂wi − E{gβ(z, β∗)|xi})(Γ̂wi − E{gβ(z, β∗)|xi})′=Op(1).(B.9)
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Write

N−1/2
NX

i=1

(w′
iγ̂)Γ̂wi − N−1/2

NX
i=1

E{h(z, α∗) − g(z, β∗)|xi} ∗ E{gβ(z, β∗)|xi}

= N−1/2
NX

i=1

(w′
iγ̂ − E{h(z, α∗) − g(z, β∗)|xi})Γ̂ − E{gβ(z, β∗)|xi})

+ N−1/2
NX

i=1

(w′
iγ̂ − E{h(z, α∗) − g(z, β∗)|xi}) ∗ E{gβ(z, β∗)|xi}

+ N−1/2
NX

i=1

(E{h(z, α∗) − g(z, β∗)|xi})(Γ̂wi − E{gβ(z, β∗)|xi}).

The first summation on the right-hand side is Op(1) by (B.8) and (B.9).
The second summation writes:

N−1/2
N∑

i=1

(w′
iγ̂ − E{h(z, α∗)− g(z, β∗)|xi})∗E{gβ(z, β∗)|xi}

= N−1/2
N∑

i=1

(w′
i(γ̂ − γ̃)) ∗ E{gβ(z, β∗)|xi}

+ N−1/2
N∑

i=1

(w′
iγ̃ − E{h(z, α∗)− g(z, β∗)|xi})∗E{gβ(z, β∗)|xi}.

With ν̂i = h(zi, α̂)− g(zi, β̂)− h(zi, α
∗) + g(zi, β

∗), write

N−1/2
N∑

i=1

(w′
iγ̂ − γ̃) ∗ E{gβ(z, β∗)|xi} = N−1/2

N∑
i=1

ν̂iÊ{gβ(z, β∗)|xi}

which is Op(1) because ν̂i → 0 at rate
√

N and Ê{gβ(z, β∗)|xi} →
E{gβ(z, β∗)|xi} in probability.

N−1/2
N∑

i=1

(w′
iγ̃ − E{h(z, α∗)− g(z, β∗)|xi})∗E{gβ(z, β∗)|xi} = Op(1)

by part (iii) of Lemma A.1 and
√

N∗supx |R1k(x)| = O(1). This proves that
the second summation is Op(1). Similarly, the third summation is Op(1).
This completes the proof of the lemma.

Lemma B.5. Under Assumptions 2.1 - 2.4, 2.6 - 2.7, and 3.1 - 3.4, we
can show that:



CONSISTENT SPECIFICATION TESTS FOR REGRESSION MODELS 21

(i) N−1

N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2

= E{[E{h(z, α∗)− g(z, β∗)|x} − E{gβ(z, β∗)|x}′θ∗]2}+ Op(1).
Moreover, if model (1) holds, we have:

(ii) N−1/2

N∑
i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)g(zi, β̂)

= N−1/2

N∑
i=1

[E{h(z, α∗)− g(z, β∗)|x}′θ∗]ui + op(1).

Proof. Part (i) follows immediately from Lemma B.4 and equations
(B.8) - (B.9). To show part (ii), we write:

N−1/2
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)g(zi, β̂)

= N−1/2
N∑

i=1

[E{h(z, α∗)− g(z, β∗)|xi} − (E{gβ(z, β∗)|xi})′θ∗]ui

+ N−1/2
N∑

i=1

[E{h(z, α∗)− g(z, β∗)|xi} − (E{gβ(z, β∗)|xi})′(θ̂ − θ∗)]ui

+ N−1/2
N∑

i=1

[w′
iγ̂ − E{h(z, α∗)− g(z, β∗)|xi} − (Γ̂wi − E{gβ(z, β∗)|xi})′θ̂]ui

+ N−1/2
N∑

i=1

[w′
iγ̂ − E{h(z, α∗)− g(z, β∗)|xi}

− (Γ̂wi − E{gβ(z, β∗)|xi})′θ̂](g(zi, β̂)− ui)

+ N−1/2
N∑

i=1

[E{h(z, α∗)− g(z, β∗)|xi} − (E{gβ(z, β∗)|xi})′θ̂](g(zi, β̂)− ui)

= A1 + A2 + A3 + A4 + A5.

A2 = op(1) because
√

N(θ̂ − θ∗) = Op(1) and E{ui|xi} = 0 by model
(1). A4 = op(1) because β̂ is

√
N consistent and (B.8) and (B.9) hold. A

mean-value expansion gives:

A5 = N−1/2
N∑

i=1

[E{h(z, α∗)−g(z, β∗)|xi}−(E{gβ(z, β∗)|xi}′θ̂]gβ(zi, ξ)′(β̂−β∗)
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where ξ is between β̂ and β∗. Since (E{h(z, α∗)−g(z, β∗)|xi}−E{gβ(z, β∗)|xi}′θ)
is the LS projection residual,

N−1
N∑

i=1

(E{h(z, α∗)− g(z, β∗)|xi} −E{gβ(z, β∗)|xi}′θ∗)gβ(zi, β
∗) = op(1).

Thus, A5 = op(1) since θ̂ and ξ are
√

N consistent.
It remains to show A3 = op(1). Let Ê{u|xi} denote the OLS fitted

values of regressing ui on wi. Applying part (ii) of Lemma A.1 to ν = u

and noting that k/
√

N → 0, we obtain N−1/2

N∑
i=1

Ê{u|xi}2 = op(1). Since

ui − Ê{u|xi} is orthogonal to wi, we obtain:

N−1/2
N∑

i=1

(w′
iγ̂)ui = N−1/2

N∑
i=1

(w′
iγ̂)∗Ê{u|xi}

= N−1/2
N∑

i=1

[w′
iγ̂ − E{h(z, α∗)− g(z, β∗)|xi}]∗Ê{u|xi}

+ N−1/2
N∑

i=1

[E{h(z, α∗)− g(z, β∗)|xi}]∗Ê{u|xi}.

The first summation on the right-hand side is op(1) by equation (B.8)

and N−1/2

N∑
i=1

Ê{u|xi}2 = op(1). Applying part (iii) of Lemma A.1 to

ϕ(x) = E{h(z, α∗)− g(z, β∗)|x} and ν = u, the second summation on the
right-hand side writes:

N−1/2
N∑

i=1

(E{h(z, α∗)− g(z, β∗)|xi})ûi

= N−1/2
N∑

i=1

(E{h(z, α∗)− g(z, β∗)|xi})ui + op(1).

This proves that

N−1/2
N∑

i=1

(w′
iγ̂ − E{h(z, α∗)− g(z, β∗)|xi})ui = op(1).
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Similarly, we can show that N−1/2

N∑
i=1

(Γ̂wi − E{gβ(z, β∗)|xi})ui = op(1).

Combining these results prove A3 = o(1) and hence part (ii).

Lemma B.6. Under Assumptions 2.1 - 2.4, 2.6 - 2.7, and 3.1 - 3.4 and
model (1), we can show that:

N−1
N∑

i=1

(w′
iγ̂ − (Γ̂wi)′θ̂)2û2

i = E{(E{h(z, α∗)− g(z, β∗)|x}

− E{gβ(z, β∗)|x}′θ∗)2u2
i }+ op(1).

Proof. It follows from equation (B.8) and (B.9) and ûi converges to ui at
rate

√
N .

Proof of Theorem 3.1 By Assumption 2.2 and the Lindeberg-Levy
central limit theorem, applying Lemma B.4 shows that

√
Nδ̂ is asymptot-

ically normal with mean zero and variance

E{(E{h(z, α∗)− g(z, β∗)|x} − (E{gβ(z, β∗)|x})′θ∗)2u2}.

By Lemma B.5, σ̂2
δ defined in equation (6) is consistent for σ2

δ . Hence, part
(i) holds.

To prove part (ii), let γ̂1 denote the OLS estimator obtained from regress-
ing g(zi, β̂) on wi, γ̂2 denote the OLS estimator obtained from regressing
h(zi, α̂) on wi, and θ̂1 denote the OLS estimator obtained from regressing
w′

iγ̂1 on Γ̂wi. Then, γ̂ = γ̂2 − γ̂1. Applying Lemma A.1 and noting that α̂

and β̂ are
√

N consistent, we can show

N−1/2
N∑

i=1

(w′
iγ̂1 − E{g(z, β∗)|xi})2 = Op(1);

N−1/2
N∑

i=1

(w′
iγ̂2 − E{h(z, α∗)|xi})2 = Op(1).

Moreover, we can show θ̂1 is
√

N consistent. Because E{h(z, α∗)|x} = 0
under (2), we have

√
N(θ̂1θ̂) = Op(1) and

N−1
N∑

i=1

(w′
iγ̂−(Γ̂wi)′θ̂)g(zi, β̂) = N−1

N∑
i=1

(w′
iγ̂1−(Γ̂wi)′θ̂1)g(zi, β̂)+op(1).
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Because g(zi, β̂)−w′
iγ̂1 is orthogonal to wi and w′

iγ̂1−(Γ̂wi)′θ̂1 is orthogonal
to Γ̂1wi, we have

N−1
N∑

i=1

(w′
iγ̂1 − (Γ̂wi)′θ̂1)g(zi, β̂) = N−1

N∑
i=1

(w′
iγ̂1 − (Γ̂wi)′θ̂1)2 > 0.

Part (ii) now follows immediately.

Proof of Theorem 4.1
Proof of part (i) Let Ê{g(z, β∗)sb(σ(x)2|x} denote the fitted values from

regressing g(zi, β
∗)sb(σ(xi)2) on wi. Then, we can write

r̂ =
N∑

i=1

[Ê{g(z, β̂)sb(σ̂(x)2)|xi}

=
N∑

i=1

[Ê{g(z, β∗)sb(σ(x)2)|xi}]2

+ 2
N∑

i=1

[Ê{g(z, β̂)sb(σ̂(x)2)|xi} − Ê{g(z, β∗)sb(σ(x)2)|xi}]

×Ê{g(z, β∗)sb(σ(x)2)|xi}

+
N∑

i=1

[Ê{g(z, β̂)sb(σ̂(x)2)|xi} − Ê{g(z, β∗)sb(σ(x)2)|xi}]2

= B1 + B2 + B3.

First, we show that B3/
√

2k = op(1). Recall that Pij is the (i, j)-th
element of P = W (W ′W )W ′. Write

B3 =
N∑

i=1

N∑
j=1

[g(zi, β̂)sb(σ̂(xi)2)−g(zi, β
∗)sb(σ(xi)2)]∗P ∗

ij [g(zj , β̂)sb(σ(xj)2)].

Taylor expansion around the true values β∗ and σ(xi) yields:

B3 =
N∑

i=1

N∑
j=1

[(β̂ − β)′gβ(zi, β)sb(σ(xi)2) + g(zi, β)s′b(σ(xi)2 − σ(xi)2]

∗ Pij ∗ [(β̂ − β)′gβ(zj , β)sb(σ(xj)2) + g(zj , β)s′b(σ(xj)2 − σ(xj)2)],



CONSISTENT SPECIFICATION TESTS FOR REGRESSION MODELS 25

where ”-” denotes the mean value between the estimators and the true
values. To show B3/

√
2k = op(1), it suffices to show:

B31 =
N∑

i=1

N∑
j=1

(β̂ − β)′gβ(zi, β)sb(σ(xi)2) ∗ Pij

× (β̂ − β)′gβ(zj , β)sb(σ(xj)2)/
√

2k = op(1);

B32 =
N∑

i=1

N∑
j=1

g(zi, β)s′b(σ(xi)2)(σ̂(xi)2 − σ(xi)2)

× Pij ∗ g(zj , β)s′b(σ(xj)2)(σ̂(xj)2 − σ(xj)2)/
√

2k

= op(1).

Note that

B31 ≤
N∑

i=1

[(β̂ − β)′gβ(zi, β)sb(σ(xi)2)]2/
√

2k

≤
√

N(β̂ − β)′ ∗N−1
N∑

i=1

gβ(zi, β)′
√

N(β̂ − β)/
√

2kb6 = op(1)

because
√

N(β̂−β) = Op(1) by Assumption 2.1, N−1
∑N

i=1 gβ(zi, β)gβ(zi, β)′

= Op(1) by Assumption 4.3, and kb6 → +∞ by Assumption 4.2.
Define v(z) = supβ∈B{g(z, β)2}. From the construction of sb(µ), we

obtain:

B32 ≤
N∑

i=1

ν(zi)(σ̂(xi)2 − σ(xi)2)2/
√

2kb6.

Let P1ij denote the (i, j)-th element of P1 = W1(W ′
1W1)−1W1, where W1 =

(w11, · · · , w1N )′. Let ν3i = [g(z, β∗)2 − E{g(z, β∗)2|x}]. Taylor expansion
around β∗ gives:

N∑
i=1

v(zi)(σ̂(xi)2 − σ(xi)2)2

=
N∑

i=1

v(zi)(
N∑

j=1

P1ijν3j + (β̂ − β∗)′
N∑

j=1

gβ(zj , β)P1ij

+
N∑

j=1

P1ijR3k1(xj)−R3k1(xi))2
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Note that

E


N∑

i=1

v(zi)

 N∑
j=1

P1ijν3j

2
 = E


N∑

i=1

N∑
j=1

v(zi)P 2
1ijν

2
3j


= E


N∑

i=1

N∑
j=1

E{v(z)|xi}P 2
1ijE{ν2

3j |xj}

 = O(k1)

because E{v(z)|xi} and E{ν2
3j |xj} are bounded by Assumption 4.3. Let

Ê{gβ(z, β)|xi} denote the fitted values from regressing gβ(zi, β) on w1i.
Then,

N∑
i=1

v(zi)((β̂ − β∗)′
N∑

j=1

gβ(zj , β)P1ij)2

=
√

N(β̂ − β∗)′[N−1
N∑

i=1

v(zi) ∗ Ê{gβ(z, β)|xi} ∗ Ê{gβ(z, β)|xi)′]
√

N(β̂ − β∗)

= Op(1)

because
√

N(β̂ − β∗) = Op(1) by Assumption 2.1 and N−1
∑N

i=1 v(zi) ∗
Ê{gβ(z, β)|xi} = Op(1) by applying Lemma A.1. Also, note that

N∑
i=1

v(zi)

 N∑
j=1

P1ijR3k1(xj)−R3k1(xi)

2

≤
N∑

i=1

v(zi)R3k1(xi)2

≤ N ∗ sup
x
{R3k1(x)2} ∗Op(1).

Combing these results proves B32 = op(1) because
N ∗ supx{R3k1(x)2}/

√
2kb6 → 0 and k1/

√
2kb6 → 0 by Assumption 4.2.

This completes the proof of B3/
√

2k = op(1).
Applying Proposition 2.3 of Hong and White (1996), (B1 − k)/

√
2k is

asymptotically standard normal. Part (i) now follows from |B2|/
√

2k ≤√
2
√

B1/k
√

B3 and B3 = op(1).
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Proof of part (ii) Note that model (1) is not used in the most part of
the proof of part (i). Thus, we have:

r̂/
√

k =
N∑

i=1

[Ê{g(z, β∗)sb(σ(x)2)|xi}]2/
√

k + op(1)

=
N∑

i=1

[Ê{g(z, β∗)/σ(x)|xi}]2/
√

k + op(1),

because σ(x) is bounded away from zero by Assumption 2.6 and b → 0. Ap-
plying parts (i) and (ii) of Lemma A.1 to ϕ(x) = E{g(z, β∗)/σ(x)|xi} and
νi = ν4i = g(zi, β

∗)/σ(xi) − E{g(z, β∗)/σ(x)|xi}, and R1k(x) = R4k(x) =
E{g(z, β∗)/σ(x)|x} − w′γ4, we obtain:

N∑
i=1

[Ê{g(z, β∗)σ(x)|xi}]2 = Op(max{k, N ∗ sup
x

R4k(x)2}).

Hence, N−1

N∑
i=1

[Ê{g(z, β∗)/σ(x)|xi}]2 = 0 since k/N → 0 and supx R4x(x)2 →

0. Part (ii) now follows from N/
√

k → +∞
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