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Abstract

This paper develops a framework for analyzing the impact of macroeconomic conditions
on credit risk and dynamic capital structure choice. We begin by observing that when
cash flows depend on current economic conditions, there will be a benefit for firms
to adapt their default and financing policies to the position of the economy in the
business cycle phase. We then demonstrate that this simple observation has a wide
range of empirical implications for corporations. Notably, we show that our model can
replicate observed debt levels and the countercyclicality of leverage ratios. We also
demonstrate that it can reproduce the observed term structure of credit spreads and
generate strictly positive credit spreads for debt contracts with very short maturities.
Finally, we characterize the impact of macroeconomic conditions on the pace and size
of capital structure changes, and debt capacity.

Keywords: Dynamic capital structure; Credit spreads; Macroeconomic conditions.

JEL Classification Numbers: G12; G32; G33.

Forthcoming: Journal of Financial Economics

∗We thank Pascal François, David T. Robinson, Pascal St Amour, Charles Trzcinka, Neng Wang, Lu
Zhang, Alexei Zhdanov, an anonymous referee, and seminar participants at Indiana University, the Univer-
sity of Rochester, Washington University St Louis, and the Frank Batten Finance Conference at the College
of William & Mary for helpful comments. Erwan Morellec acknowledges financial support from FAME and
from NCCR FINRISK of the Swiss National Science Foundation.

†Finance Department, Olin School of Business, Washington University in St. Louis, Campus Box 1133,
One Brookings Drive, St. Louis, MO 63130. E-mail: hackbarth@olin.wustl.edu. Phone: (314) 935-8374.

‡Department of Economics, Boston University, 270 Bay State Road, Boston MA 02215. E-mail:
miaoj@bu.edu. Phone: (617) 353-6675. Fax: (617) 353-4449.

§Corresponding author: University of Lausanne, FAME, and CEPR. Postal address: Institute of Banking
and Finance, Ecole des HEC, University of Lausanne, Route de Chavannes 33, 1007 Lausanne, Switzerland.
E-mail address: erwan.morellec@unil.ch. Phone: +41 (0)21 692 3357.



1 Introduction

Since Modigliani and Miller (1958), economists have devoted much effort to understanding
firms’ financing policies. While most of the early literature analyzes financing decisions
within qualitative models, recent research tries to provide quantitative guidance as well.1

However, despite the substantial development of this literature, little attention has been
paid to the effects of macroeconomic conditions on credit risk and capital structure choices.
This is relatively surprising since economic intuition suggests that the position of the
economy in the business cycle phase should be an important determinant of default risk, and
thus, of financing decisions. For example, we know that during recessions, consumers are
likely to cut back on luxuries, and thus firms in the consumer durable goods sector should
see their credit risk increase. Moreover, there is considerable evidence that macroeconomic
conditions impact the probability of default (see Fama (1986) or Duffie and Singleton (2003,
pp45-47)). Yet, existing models of firms’ financing policies typically ignore this dimension.

In this paper we contend that macroeconomic conditions should have a large impact
not only on credit risk but also on firms’ financing decisions. Indeed, if one determines
optimal leverage by balancing the tax benefit of debt and bankruptcy costs, then both
the benefit and the cost of debt should depend on macroeconomic conditions. The tax
benefit of debt obviously depends on the level of cash flows, which in turn should depend
on whether the economy is in an expansion or in a contraction. In addition, expected
bankruptcy costs depend on the probability of default and the loss given default, both
of which should depend on the current state of the economy. As a result, variations in
macroeconomic conditions should induce variations in optimal leverage.

The purpose of this paper is to provide a first step towards the understanding of the
quantitative impact of macroeconomic conditions on credit risk and capital structure de-
cisions. For doing so, we develop a contingent claims model in which the firm’s cash flows
depend on both an idiosyncratic shock and an aggregate shock that reflects the state of the

1Since the seminal papers by Merton (1974), Black and Cox (1976) and Brennan and Schwartz (1978), the
literature on the valuation of corporate securities and financing decisions has substantially developed. Mello
and Parsons (1992) and Leland (1994) endogenize shareholders’ default decision and determine optimal
capital structure. Fischer, Heinkel and Zechner (1989), Leland (1998), and Goldstein, Ju and Leland
(2001) consider optimal dynamic capital structure. Fan and Sundaresan (2000), François and Morellec
(2004), and Hege and Mella-Barral (2003) analyze the effects of strategic default. Morellec (2001) analyzes
the impact of asset liquidity on leverage and the structure of debt contracts. Fries, Miller and Perraudin
(1997), Lambrecht (2001), and Miao (2004) investigate the interaction between capital structure and product
market competition. Cadenillas, Cvitanic, and Zapatero (2004), and Morellec (2004) examine the role of
manager-stockholder conflicts in explaining debt levels. Duffie and Lando (2001) incorporate imperfect
information and learning. Hackbarth (2003), Hennessy (2004), and Mauer and Triantis (1994) investigate
the impact of financing policy on investment policy.

1



economy. The analysis is developed within a standard model of capital structure decisions
in the spirit of Mello and Parsons (1992). Specifically, we consider a firm having exclusive
access to a project that yields a stochastic stream of cash flows. The firm is levered be-
cause debt allows it to shield part of its income from taxation. However, leverage is limited
because debt financing increases the likelihood of costly financial distress. Once debt has
been issued, shareholders have the option to default on their obligations. Based on this
endogenous modeling of default, the paper derives valuation formulas for coupon-bearing
debt with arbitrary maturity, equity, and levered firm value. These closed-form expressions
are then used to analyze credit risk and determine optimal leverage.

The analysis shows that, when the value of the aggregate shock shifts between differ-
ent states (boom or recession), shareholders’ default policy is characterized by a different
threshold for each state. Under this policy the state space can be partitioned into various
domains including a continuation region where no default occurs. Outside of this region,
default can occur either because cash flows reach the default threshold in a given state
or because of a change in the state of the aggregate shock. In other words, aggregate
shocks generate some time-series variation in the present value of future cash flows to cur-
rent cash flows that may induce the firm to default following a change in macroeconomic
conditions. The paper also demonstrates that while variations in idiosyncratic shocks are
unlikely to explain the clustering of exit decisions observed in many markets, changes in
macroeconomic conditions provide the ground for such phenomena.

Following the analysis of the shareholders’ default policy, we examine the implications
of the model for financing decisions. The leverage ratios generated by the model are in
line with those observed in practice. In addition, the model predicts that leverage is
counter-cyclical, consistent with the evidence reported by Korajczyk and Levy (2003). We
also examine dynamic capital structure choice and relate both the pace and the size of
capital structure changes to macroeconomic conditions.2 In particular, we find that firms
should adjust their capital structure more often and by smaller amounts in booms than in
recessions.Another quantity of interest for corporations is the credit spread on corporate
debt. We show that the model can generate a term structure of credit spreads which is in
line with empirically observed credit spreads on corporate debt and strictly positive credit
spreads for short term debt issues.

The remainder of the paper is organized as follows. Section 2 develops a static model of
capital structure decisions in which firms’ cash flows depend on macroeconomic conditions.
Section 3 determines the prices of corporate securities. Section 4 discusses implications.
Section 5 examines dynamic capital structure choice. Section 6 concludes.

2The study by Drobetz and Wanzendried (2004) provides early empirical support for this hypothesis.
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2 The model

2.1 Assumptions

We construct a partial equilibrium model of firms’ financing decisions. Throughout the
paper, agents are risk-neutral and discount cash flows at a constant interest rate r.3 Time
is continuous and uncertainty is modeled by a complete probability space (Ω,F ,P). We
consider an infinitely-lived firm with assets that generate a continuous stream of cash flows.
Management acts in the best interests of shareholders. Corporate taxes are paid at a rate
τ on operating cash flows, and full offsets of corporate losses are allowed. At any time t,
the firm’s instantaneous operating profit (EBIT) satisfies:

f (xt, yt) = xtyt, (1)

where (yt)t≥0 is an aggregate shock that reflects the state of the economy, and (xt)t≥0 is
an idiosyncratic shock that reflects the firm-level productivity uncertainty.4 We presume
that (xt)t≥0 is independent of (yt)t≥0 and governed by the geometric Brownian motion:

dxt = µxtdt+ σxtdWt, x0 > 0 given, (2)

where µ < r and σ > 0 are constant parameters and (Wt)t≥0 is a standard Brownian
motion defined on (Ω,F ,P). Both x and y are observable to all agents.

Because it pays taxes on corporate income, the firm has an incentive to issue debt.
Following Leland (1998), we consider finite-maturity debt structures in a stationary envi-
ronment. The firm has debt with constant principal p, paying a constant total coupon c,
at each moment in time. It instantaneously rolls over a fraction m of its total debt. That

3Throughout the analysis, the risk free rate r is constant and, as a result, does not move with macro-
economic conditions. This is supported by the weak historical correlation (presumably due to adjustments
in monetary policy) between fluctuations in real GDP or fluctuations in real consumption and the rate
of return on risk-free debt. More specifically, over the period 1959:3-1998:4, the correlation between the
quarterly growth rate on real consumption per capita (source NIPA on non-durables and services) and the
3 month T-bill rate on the secondary market is -0.0031. Over that same period, the correlation between
the quarterly growth rate on GDP and the 3 month T-bill rate on the secondary market is 0.0561. In
addition, Campbell (1997) reports that the “the annualized standard deviation of the ex post real returns
on US Treasury bills is 1.8% and much of this is due to short-term inflation risk. [...] Thus, the standard
deviation of the ex ante real interest rate is considerably smaller.”

4Suppose that the firm’s production function is Yt = AtN
γ
t , where Yt is output, At is the firm-level

productivity shock, Nt is labor, and γ ∈ (0, 1) represents returns to scale. Let the firm’s inverse demand
function be given by pt = htY

−1/ε
t , where ht represents the aggregate demand shock and ε > 0 is the

elasticity of demand. Then the firm’s profit is given by ft = maxNt ptYt −wtNt, where wt is the wage rate
assumed to be constant. Solving yields ft = θθ/(1−θ)[1 − θ]ht

1/(1−θ)At
1/γw

−θ/(1−θ)
t with θ = γ(ε − 1)/ε.

Letting yt = θθ/(1−θ)[1− θ]ht
1/(1−θ) and xt = At

1/γw
−θ/(1−θ)
t , we obtain ft = xtyt as in Eq. (1).
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is, the firm continuously retires outstanding debt principal at a rate mp (except when
bankruptcy occurs), and replaces it with new debt vintages of identical coupon, principal,
and seniority. Therefore, any finite-maturity debt policy is completely characterized by the
tuple (c,m, p). In the absence of bankruptcy, the average debt maturity T equals 1/m.

Economically, our finite-maturity debt assumption corresponds to commonly used sink-
ing fund provisions (e.g. Smith and Warner, 1979). Mathematically, this modeling ap-
proach is equivalent to debt amortization being simply an exponential function of time.
Since the total coupon rate and the sinking fund requirement are fixed, we obtain a time-
homogeneous setting akin to Leland (1998), Duffie and Lando (2001), and Morellec (2001).
We further assume that the debt coupon is initially determined such that debt value equals
principal value. That is, debt is issued at par.5 Proceeds from the debt issue are paid out
as a cash distribution to shareholders at the time of flotation.

Once debt has been issued, shareholders’ only decision is to select the default policy
that maximizes equity value. We presume that if the firm defaults on its debt obligations,
it is immediately liquidated. In the event of default, the liquidation value of the firm is
αA (xt), where α ∈ (0, 1) is a regime-dependent recovery rate on assets and A (xt) is the
value of unlevered assets. Section 5 extends the basic model to incorporate dynamic capital
structure choice. In this more general setting, shareholders have to decide on the initial
amount of debt to issue as well as the optimal default and restructuring policies.

2.2 Relation with existing literature

Before proceeding to the analysis, it might be helpful to briefly contrast the present model
with some related lines of research.

Contingent claims analysis. As in previous contingent claims models, we analyze eq-
uity in a levered firm as an option on the firm’s assets and model the decision to default
as a stopping problem. The distinguishing feature of our model is that the current cash
flow depends on current macroeconomic conditions (expansion or contraction). Because
the decision to default balances the present value of cash flows in continuation with the
present value of cash flows in default, this implies that the decision to default also depends
on current macroeconomic conditions. This feature is unique to our model and could not
be reproduced by introducing discontinuities through a jump-diffusion model.

Regime shifts and firms’ policy choices. Recent work by Guo, Miao, and Morellec
(GMM, 2005) investigates the impact of discrete changes in the growth rate and volatility

5This assumption implies that the tax benefits of debt only hinge upon the chosen debt coupon and
hence do not depend on whether debt is initially floated at a discount or premium to principal value.
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of cash flows on firms’ investment decisions. One important point of departure from GMM
is that we introduce regime shifts in the aggregate shock only and the aggregate shock
influences cash flows multiplicatively. Another important difference is that GMM analyze
real investment whereas we examine capital structure decisions. Finally, from a technical
point of view, GMM solve a control problem where control policies change the underlying
diffusion process whereas we solve a stopping problem.

3 Valuation of corporate securities

In this section, we derive the values of corporate debt and equity as well as the default
thresholds selected by shareholders. These results will be used below to analyze credit risk
and capital structure decisions. To examine the impact of macroeconomic conditions on
these quantities in the simplest possible environment, we consider that the aggregate shock
(yt)t≥0 can only take two values: yL and yH with yH > yL > 0. In addition, we presume
that yt is observable and that its transition probability follows a Poisson law, such that
(yt)t≥0 is a two-state Markov chain. Let λi > 0 denote the rate of leaving state i and ci

the time to leave state i. Within the present model, the exponential law holds:

P (ci > t) = e−λit, i = H,L, (3)

and there is a probability λi∆t that the value of the shock (yt)t≥0 changes from yi to yj

during an infinitesimal time interval ∆t. In addition, the expected duration of regime L is
(λL)

−1 and the average fraction of time spent in that regime is λH(λL + λH)
−1.

3.1 Finite-maturity debt value

We start by determining the value of corporate debt. Debt value equals the sum of the
present value of the cash flows accruing to debtholders until the default time and the change
in this present value arising in default. Since the latter component depends on the firm’s
abandonment value, we start by deriving this value.

3.1.1 Liquidation value

We follow Mello and Parsons (1992) and Leland (1994) by presuming that the abandonment
value of the firm equals the value of unlevered assets; i.e., the unlimited liability value of
a perpetual claim to the current flow of after-tax operating income. Denoting by EP [ · | · ]
the conditional expectation operator associated with P, we can thus write this value as:

Ai(x) = EP
∙Z ∞

0
e−rt (1− τ)xt yt dt

¯̄̄̄
x0 = x, y0 = yi

¸
, i = L,H. (4)
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Since the level of the firm’s operating cash flows depend on the current regime, so does the
firm’s abandonment value. Applying Itô’s lemma and after simplifications, we find that
Ai(x) satisfies the system of Ordinary Differential Equations (ODEs):

rAL (x) = µxA0L (x) +
σ2

2
x2A00L (x) + λL [AH (x)−AL (x)] + (1− τ)xyL, (5)

rAH (x) = µxA0H (x) +
σ2

2
x2A00H (x) + λH [AL (x)−AH (x)] + (1− τ)xyH . (6)

Within the current framework, the expected rate of return on corporate securities is r.
Thus, the left hand side of these equations reflects the required rate of return for holding
the asset per unit of time. The right hand side is the expected change in the asset value
(i.e. the realized rate of return). These expressions are similar to those derived in standard
contingent claims models. However, they contain an additional term λi [Aj (x)−Ai (x)]

that reflects the impact of the aggregate shock on the value functions. This term is the
product of the instantaneous probability of a regime shift and the change in the value
function occurring after a regime shift.

Solving these ODEs subject to the boundedness conditions

lim
x→∞

Ai(x)

x
<∞ and lim

x→0Ai(x) <∞, (7)

yields the following expression for the firm’s abandonment value:

Ai(x) = (1− τ)Ki x, i = L,H, (8)

where

KH =
yH
r − µ

− λH (yH − yL)

(r − µ) (r − µ+ λL + λH)
, (9)

KL =
yL

r − µ
+

λL (yH − yL)

(r − µ) (r − µ+ λL + λH)
. (10)

In the expressions, the first term on the right hand side is the abandonment value of the
firm in the absence of regime shifts. The second term adjusts this abandonment value to
reflect the possibility of a regime shift (thereby attenuating implied changes).

3.1.2 Debt value

Consider next the value of corporate debt. Denote by d0i (x, c,m, p, t) the date t value
of debt issued at time 0. These original debtholders receive a total payment rate of
e−mt (c+mp) as long as the firm is solvent. Now define the value of total outstanding
debt at any date t by di (x, c,m, p) = emtd0i (x, c,m, p, t). Because di (x, c,m, p) receives a
constant payment rate c+mp, it is independent of t.
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Let x∗i denote the default threshold that maximize equity value in regime i = H,L.

Since f is strictly increasing in y and yL < yH , it is straightforward to show that x∗L > x∗H .
That is, the firm defaults earlier in recessions than in expansions. Using Itô’s lemma, it
can be shown that the total value of outstanding debt solves the following system of ODEs
(the arguments for the debt structure c,m, and p are omitted):

• On the region x∗H ≤ x ≤ x∗L,

(r +m) dH (x) = µxd0H (x) +
σ2

2
x2d00H (x) + λH [αLAL(x)− dH (x)] + c+mp. (11)

• On the region x ≥ x∗L,

(r +m) dL (x) = µxd0L (x) +
σ2

2
x2d00L (x) + λL [dH (x)− dL (x)] + c+mp, (12)

(r +m) dH (x) = µxd0H (x) +
σ2

2
x2d00H (x) + λH [dL (x)− dH (x)] + c+mp.(13)

As was the case for the abandonment value, these equations are similar to those obtained
in the standard diffusion case (e.g. Leland, 1998) and incorporate an additional term that
reflects the impact of the possibility of a change in the value of the aggregate shock on asset
prices. This term equals λH [αLAL(x)− dH (x)] in Eq. (11), where αL is the recovery rate
in a recession, since it will be optimal for shareholders to default subsequent to a change
of yt from yH to yL on the interval [x∗H , x

∗
L]. (See section 3.3.2 for a discussion.)

This system of ODEs is associated with the following four boundary conditions:

dL(x
∗
L, c,m, p) = αLAL(x

∗
L), (14)

dH(x
∗
H , c,m, p) = αHAH(x

∗
H), (15)

lim
x↓x∗L

dH(x, c,m, p) = lim
x↑x∗L

dH(x, c,m, p), (16)

lim
x↓x∗L

d0H(x, c,m, p) = lim
x↑x∗L

d0H(x, c,m, p), (17)

where derivatives are taken with respect to x. The value-matching conditions (14)-(15)
impose an equality between the value of corporate debt and the value of cash flows accruing
to debtholders in default. Because the decision to default does not belong to bondholders,
these value-matching conditions are not associated with additional optimality conditions.
In addition, because cash flows to claimholders are given by a (piecewise) continuous,
Borel-bounded function, the debt value functions di (·) are piecewise C2 (see Theorem 4.9
pp. 271 in Karatzas and Shreve, 1991). Therefore, the value function dH (·) is C0 and C1
and satisfies the continuity and smoothness conditions (16)-(17). Solving Eqs. (12)-(17),
we obtain the following proposition where, for notational convenience, finite-maturity debt
parameters are identified by bars (e.g., ξ or T ).
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Proposition 1 When the firm’s operating cash flows are given by Eq. (1) and it has issued
finite-maturity debt with coupon payment c, instantaneous debt retirement rate m, and total
principal p, the value of corporate debt in regime i = L,H is given by

dL (x, c,m, p) =

⎧⎨⎩ Axξ − λLBx
γ +

c+mp

r +m
, x ≥ x∗L,

αL(1− τ)KLx, x ≤ x∗L,
(18)

and

dH (x, c,m, p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Axξ + λHBx

γ +
c+mp

r +m
, x ≥ x∗L,

Cxβ1 +Dxβ2 + λH
(1− τ)αLKLx

r − µ+m+ λH
+

c+mp

r + λH +m
, x∗H ≤ x ≤ x∗L,

αH(1− τ)KHx, x ≤ x∗H ,
(19)

where the endogenous default thresholds x∗L and x∗H are reported in Proposition 4, the
parameters KL and KH are given in Eqs. (9)-(10), the exponents γ, ξ, β1, β2 are defined
by

ξ = 0.5− µ/σ2 −
q
(0.5− µ/σ2)2 + 2(r +m)/σ2, (20)

γ = 0.5− µ/σ2 −
q
(0.5− µ/σ2)2 + 2(r +m+ λL + λH)/σ2, (21)

β1 = 0.5− µ/σ2 +

q
(0.5− µ/σ2)2 + 2(r +m+ λH)/σ2, (22)

β2 = 0.5− µ/σ2 −
q
(0.5− µ/σ2)2 + 2(r +m+ λH)/σ2, (23)

the constants A, B, C, and D satisfy

A =
w1 + λLB(x

∗
L)

γ

(x∗L)ξ
, B =

w4+ξw1−β1w2
x∗L
x∗
H

β1
w6− w3+w1−w2 x∗L

x∗
H

β1
w8

w5w8−w6w7 ,

C =
w2 −D(x∗H)

β2

(x∗H)β1
, D =

w4+ξw1−β1w2
x∗L
x∗
H

β1
w5− w3+w1−w2 x∗L

x∗
H

β1
w7

w5w8−w6w7 ,

(24)

and

w1 = (1− τ)αLKLx
∗
L −

c+mp

r +m
, w2 =

∙
(1− τ)αHKH +

w4
x∗L

¸
x∗H −

c+mp

r + λH +m
,

w3 = w4 +
c+mp

r +m
− c+mp

r + λH +m
, w4 = −λH (1− τ)αLKLx

∗
L

r − µ+m+ λH
,

w5 = (λL + λH) (x
∗
L)

γ , w6 = (x
∗
L)

β2 − (x∗H)β2
³
x∗L
x∗H

´β1
,

w7 =
¡
ξλL + γλH

¢
(x∗L)

γ , w8 = β2 (x
∗
L)

β2 − β1(x
∗
H)

β2

³
x∗L
x∗H

´β1
.

(25)
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Proposition 1 provides the value of corporate debt when cash flows from assets in place
depend on the realizations of both an idiosyncratic shock and an aggregate shock. The
value of corporate debt is equal to the sum of the value of a perpetual entitlement to the
current debt service flow and the change in value that occurs either after a sudden change
in the value of the aggregate shock or when the idiosyncratic shock smoothly reaches a
default boundary x∗i . In these valuation formulas, the default threshold is determined by
shareholders and hence is an exogenous parameter for bondholders.

Proposition 1 shows that the value of corporate debt in the continuation region [x∗L,∞)
has three components. First, it incorporates the value of a perpetual claim to the stream
of risk-free coupon and debt retirement payments. Second, it reflects the change in value
arising when the idiosyncratic shock reaches the default boundary x∗L the first time from
above; i.e., debtholders’ recoveries. Third, it captures the change in default risk that
occurs following a change in the value of the aggregate shock. The value of corporate debt
in the transient region [x∗H , x

∗
L] also has three components. First, it includes the value of

a perpetual claim to the stream of non-defaultable debt service payments, (c +mp)/(r +

λH +m). Because the rate of leaving state i = H is λH , the discount rate is increased
by λH to reflect the possibility of a change in the value of the aggregate shock. Second,
it reflects the change in debt value that arises when the value of the idiosyncratic shock
either reaches the default boundary x∗H the first time from above or the upper boundary of
that region x∗L from below. Third, it captures the change in value that arises when default
occurs suddenly (i.e. following a change of yt from yH to yL on the interval [x∗H , x

∗
L]).

3.2 Firm value

We now turn to the value of the levered firm. Total firm value equals the sum of unlimited
liability value of a perpetual claim to the current flow of after-tax operating income, plus
the present value of a perpetual claim to the current flow of tax benefits of debt, minus
the change in those present values arising in default. Thus, the levered firm value vi(x)
satisfies the following system of ODEs (the argument for the coupon c is omitted):

• On the region x ≥ x∗L,

rvL (x) = µxv0L (x) +
σ2

2
x2v00L (x) + λL [vH (x)− vL (x)] + (1− τ)xyL + τc,(26)

rvH (x) = µxv0H (x) +
σ2

2
x2v00H (x) + λH [vL (x)− vH (x)] + (1− τ)xyH + τc.(27)

• On the region x∗H ≤ x ≤ x∗L,

rvH (x) = µxv0H (x)+
σ2

2
x2v00H (x)+λH [αLAL(x)− vH (x)]+(1−τ)xyH+τc. (28)
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This system of ODEs is associated with the following four boundary conditions:

vL(x
∗
L, c) = αLAL(x

∗
L), (29)

vH(x
∗
H , c) = αHAH(x

∗
H), (30)

lim
x↓x∗L

vH(x, c) = lim
x↑x∗L

vH(x, c), (31)

lim
x↓x∗L

v0H(x, c) = lim
x↑x∗L

v0H(x, c). (32)

The value-matching conditions (29)-(30) impose an equality between levered firm value
and abandonment value at the time of default. Again Eqs. (31)-(32) are continuity and
smoothness conditions. Using Eqs. (26)-(32), we obtain the next result.

Proposition 2 When the firm’s operating cash flows are given by Eq. (1), the value of the
levered firm in regime i = L,H is given by

vL (x, c) =

(
Axξ − λLBx

γ + (1− τ)KLx+
τc

r
, x ≥ x∗L,

αL(1− τ)KLx, x ≤ x∗L,
(33)

and

vH (x, c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Axξ + λHBx

γ + (1− τ)KHx+
τc

r
, x ≥ x∗L,

Cxβ1 +Dxβ2 + λH
(1− τ)αLKLx

r − µ+ λH
+
(1− τ) yHx

r − µ+ λH
+

τc

r + λH
, x∗H ≤ x ≤ x∗L,

αH(1− τ)KHx, x ≤ x∗H ,
(34)

where the endogenous default thresholds x∗L and x∗H are reported in Proposition 4, the
parameters KL, KH are given in Eqs. (9)-(10), the exponents γ, ξ, β1, and β2 are defined
as in Eqs. (20)-(23) with m = 0, and the constants A, B, C, and D satisfy

A =
w1+λLB(x

∗
L)

γ

(x∗L)ξ
, B =

w4+ξw1−β1w2
x∗L
x∗
H

β1
w6− w3+w1−w2 x∗L

x∗
H

β1
w8

w5w8−w6w7 ,

C =
w2−D(x∗H)β2
(x∗H)

β1
, D =

w4+ξw1−β1w2
x∗L
x∗
H

β1
w5− w3+w1−w2 x∗L

x∗
H

β1
w7

w5w8−w6w7 ,

(35)

where

w1 = (1− τ) (αL − 1)KLx
∗
L −

τc

r
, w2 = (1− τ)

µ
αHKH − yH + λHαLKL

r − µ+ λH

¶
x∗H −

τc

r + λH
,

w3 = w4 +
λH

r + λH

τc

r
, w4 = (1− τ)

µ
KH − yH + λHαLKL

r − µ+ λH

¶
x∗L,

w5 = (λL + λH) (x
∗
L)

γ , w6 = (x
∗
L)

β2 − (x∗H)β2
³
x∗L
x∗H

´β1
,

w7 = (ξλL + γλH) (x
∗
L)

γ , w8 = β2 (x
∗
L)

β2 − β1(x
∗
H)

β2

³
x∗L
x∗H

´β1
,

(36)
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The expressions reported in Proposition 2 for the levered firm value are similar to
those provided for the value of corporate debt (Proposition 1) and, thus, admit a similar
interpretation. Total firm value is equal to the sum of the value of a perpetual entitlement
to the current flow of income and the change in value that occurs either after a change in
the value of the aggregate shock or when the idiosyncratic shock reaches a boundary x∗i .
As was the case for the value of corporate debt, the default threshold is chosen solely by
shareholders and hence is an exogenous parameter for firm value.

3.3 Equity value and default policy

Because the values of corporate securities depend on the default threshold selected by
shareholders, we now turn to the valuation of equity. Based on the closed-form solution
for equity value, we will derive the equity value-maximizing default policy.

3.3.1 Equity value

In the absence of arbitrage, levered firm value equals the sum of debt and equity values.
Formally, vi(·) ≡ di(·) + ei(·) for i = L,H. This simple observation permits the following
result.

Proposition 3 When the firm’s operating cash flows are given by Eq. (1) and the firm
has issued finite-maturity debt with contractual coupon payment c, instantaneous debt re-
tirement rate m, and total principal p, the value of equity in regime i = L,H is given
by

eL (x, c,m, p) =

(
vL (x, c)− dL (x, c,m, p), x ≥ x∗L,
0, x ≤ x∗L,

(37)

and

eH (x, c,m, p) =

⎧⎪⎨⎪⎩
vH (x, c)− dH (x, c,m, p) , x ≥ x∗L,
vH (x, c)− dH (x, c,m, p) , x∗H ≤ x ≤ x∗L,
0, x ≤ x∗H ,

(38)

where the endogenous default thresholds x∗L and x
∗
H are reported in Proposition 4 and di(·)

and vi(·) in regime i = L,H are given in Propositions 1 and 2, respectively.

The expressions reported in Proposition 3 for the value of equity are similar to those
provided for firm value (Proposition 2) and, thus, admit a similar interpretation. Since
debt and firm value functions individually satisfy the appropriate value-matching condi-
tions in Eqs. (14)-(15) and Eqs. (29)-(30), equity value, or vi(·) − di(·), also satisfies the
corresponding value-matching conditions. Likewise, debt and firm value functions are de-
rived based upon the appropriate continuity and smoothness conditions in Eqs. (16)-(17)
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and Eqs. (31)-(32). Hence, equity value satisfies boundary conditions of this type too.
Given the abandonment value function of the firm, equity value equals zero in case of
both smooth and sudden default when the absolute priority rule is enforced (see Morellec,
2001). The main difference between firm (or debt) and equity is that the default threshold
is determined by shareholders and, hence, only depends on equity value.

3.3.2 Default policy

Once debt has been issued, shareholders’ only decision in the static model is to select
the default policy that maximizes the value of equity. Within our model, markets are
frictionless and default is triggered by shareholders’ decision to optimally cease injecting
funds in the firm (see also Leland (1998), Duffie and Lando (2001), and Morellec (2004)).
Formally, an equity value-maximizing default policy in our framework is associated with
the following two boundary conditions:

e0L (x
∗
L, c,m, p) = 0, (39)

e0H (x
∗
H , c,m, p) = 0, (40)

where derivatives are taken with respect to x. The smooth-pasting conditions (39) and (40)
ensure that default occurs along the optimal path by requiring a continuity of the slopes at
the endogenous default thresholds x∗L and x

∗
H . By combining the results from Propositions

1-3 with equity holders’ optimality conditions in (39)-(40), we obtain closed-form expression
for the endogenous default thresholds reported in Proposition 4.

Proposition 4 When the firm’s operating cash flows are given by Eq. (1),the default policy
that maximizes equity value in regime i = L,H is given by a trigger-strategy x∗i . That is,
if there exist non-negative solutions to the following non-linear equations

w1ξ − w1ξ + (1− τ)Kl x
∗
L = λL

h
(γ − ξ)B (x∗L)

γ − (γ − ξ)B (x∗L)
γ
i

(41)

w2β1 − w2β1 +
(1− τ) yH
r − µ+ λH

x∗H = (β1 − β2) D (x∗H)
β2 − ¡

β1 − β2
¢
D (x∗H)

β2(42)

where w1, w1, w2, w2, B,D,B, and D are given in Eqs. (27)-(28) and Eqs. (41)-(42), then
the equity value-maximizing default policy is characterized by the default thresholds x∗L ≡
Rx∗H and x∗H that solve the above two equations.

As in standard contingent claims models, the default policy that maximizes equity
value balances the present value of the cash flows that shareholders receive in continuation
with the cash flow that they receive in liquidation. The present value of a perpetual
entitlement to the (pretax) cash flows to shareholders in state i and at time t is given by
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Kix− (c+mp)/(r+m). Therefore, for a given debt policy (c,m, p), the default threshold
should decrease with those parameters that increase Ki. At the same time, the decision
to default should be hastened by larger opportunity costs of remaining active. Hence the
default thresholds increase with the debt coupon c and the debt principal p, and decrease
with average debt maturity T = 1/m.

To better understand the mechanics of default, consider the case of infinite maturity
debt where m = 0. In this case, the equity value-maximizing default threshold is linearly
increasing in the debt service flow c in each regime i (see Appendix B). This default policy
implies that it is possible to represent, for each regime i, the no-default and default regions
as in Figure 1a. In the no-default region [x∗i ,∞), the value of waiting to default exceeds the
default payoff and it is optimal for shareholders to inject funds in the firm. In the default
region (0, x∗i ], the default payoff exceeds the present value of cash flows in continuation and
hence it is optimal for shareholders to default.

[Insert Figure 1 Here]

The region [x∗H , x
∗
L] — where default occurs if the value of the aggregate shock changes

from yH to yL — can then be represented as in Figure 1b. This figure reveals that while
the optimal default policy corresponds to a trigger policy when the economy is in a boom,
this is not the case when it is in a contraction. In this second state, there are two ways
to trigger default. First, the value of the idiosyncratic shock can decrease to the default
threshold x∗L. This is the default policy that is described in standard models of the levered
firm. Second, there can be a change in the value of the aggregate shock from yH to yL

while the value of the idiosyncratic shock belongs to the region [x∗H , x
∗
L]. We show below

that these two ways to trigger default have different implications at the aggregate level.

4 Empirical predictions

4.1 Calibration of parameters

This section examines the empirical predictions of the model for the decision to default,
value-maximizing financing policies, and credit spreads on corporate debt. To determine
asset prices and capital structure decisions, we need to select parameter values for the
initial value of the firm’s assets x0, the risk free interest rate r, the tax advantage of debt
τ , the recovery rate αi, the volatility of the firm’s income σ, the growth rate of cash flows
µ, and the persistence in regimes λL and λH . In what follows, we select parameter values
that roughly reflect a typical S&P 500 firm. Table 1 summarizes our parameter choices.

Consider first the parameters governing operating cash flows. We set the initial value
of these cash flows at x0 = 1. While this value is arbitrary, we show below that neither
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optimal leverage ratios nor credit spreads at optimal leverage depend on this parameter.
The risk free rate is taken from the yield curve on Treasury bonds. The growth rate of
cash flows has been selected to generate a payout ratio consistent with observed payout
ratios. The firm’s payout ratio reflects the sum of the payments to both bondholders and
shareholders. Following Huang and Huang (2002), we take the weighted averages between
the average dividend yields (4% according to Ibbotson and Associates) and the average
historical coupon rate (close to 9%), with weights given by the median leverage ratio of
S&P 500 firms (approximately 20%). In our model, the firm’s payout ratio in regime i is
given by: ((1− τ)xyi + τci) /vi (x, ci) where ci is the coupon payment in regime i. In the
base case, the predicted payout is 2.35% in regime L and 6.85% in regime H. Weighting
those values by the fraction of the time spent in each regime gives an average payout ratio
of: 0.4 × 2.35 + 0.6 × 6.85 = 5.05%. Similarly, the value of the volatility parameter has
been chosen to match the (leverage-adjusted) asset return volatility of an average S&P 500
firm’s equity return volatility.

Table 1 Parameter Choices

risk free interest rate r = 0.055

initial level of cash flow x0 = 1

growth rate of cash flows µ = 0.005

volatility of cash flows σ = 0.25

tax advantage of debt τ = 0.15

recovery rate on assets αH = αL = 0.6

persistence of shocks λL = 0.15, λH = 0.1
average debt maturity T = 5 (m = 0.2)

The tax advantage of debt captures corporate and personal taxes and is set equal to
τ = 0.15. Liquidation costs (in percentage) are defined as the firm’s going concern value
minus its liquidation value, divided by its going concern value, which is measured by 1−α

within our model. Using this definition, Alderson and Betker (1995) and Gilson (1997)
respectively report liquidation costs equal to 36.5% and 45.5% for the median firm in their
samples. We simply take the average, which is about 40%. This asset recovery rate implies
an expected recovery rate of 50% on debt principal, which is close to the historical average
reported by Hamilton, Cantor, and Ou (2003).

The maturity of corporate debt is chosen to reflect the average maturity of corporate
bonds as reported by Barclay and Smith (1995) and Stohs and Mauer (1996). Thus, we take
T = 5 in our base case. The persistence parameter values reflect the fact that expansions
are of longer duration than recessions. Importantly, the relative increase in the present
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value of future cash flows following a shift from the contraction regime to the expansion
regimes is equal to:

AH(x)−AL(x)

AL(x)
=

(r − µ) (yH − yL)

λLyH + λHyL + (r − µ) yL
= 20%. (43)

Thus, our base case environment calls for reasonable variations of policy choices across
regimes. In addition, these input parameter values imply a ratio of the default rate in a
recession vs. a boom between 5 and 7.5, which is consistent with US historical data as
reported by Altman and Brady (2001).

Finally, we have reported formulas for asset prices, given a coupon c and a principal
value p. When debt is first issued, there is an additional constraint relating the market
value of corporate debt to its principal: for a given degree of leverage, the coupon c is set
so that market value di (·) equals principal value p in regime i = L,H.

4.2 The decision to default

We start by analyzing shareholders’ default decision. As shown in section 3, when the
default decision is endogenous, the default threshold selected by shareholders depends on
the parameters determining the firm’s environment and there exists one default threshold
per regime. In particular, we show in the Appendix that, when m = 0, we can write the
default threshold in the expansion regime as

KHx
∗
H =

c

r
Γ, (44)

in which Γ is a positive constant and

KHx
∗
H = E

∙Z ∞

t
e−ruxt+uyt+udu

¯̄̄̄
xt = x∗H , yt = yH

¸
. (45)

These equations reveal that shareholders default on the firm’s debt obligations when the
present value of future cash flows equals the adjusted opportunity cost of remaining active.
The adjustment is made through the factor Γ, which represents the option value of waiting
to default. A similar argument applies to the default decision in the recession regime.

Another interesting feature of the optimal default policy is that, because of the pos-
sibility of a regime shift, the default thresholds x∗L and x∗H are related to one another.
Specifically, the equity value-maximizing default strategy is characterized by a different
default threshold in each regime. Moreover because the possibility of a regime shift, each
default threshold takes into account the optimal default threshold in the other regime.
This functional dependence is captured by the ratio R of the two default thresholds. Two
factors are essential in determining the magnitude of this ratio: (1) the ratio of cash flows
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in the expansion vs. contraction regimes yH/yL, and (2) the persistence in regimes λL
and λH . In particular, the ratio of the two default thresholds increases with yH/yL. In
addition, because the persistence in regimes represents the opportunity cost of defaulting
in one regime vs. the other, an increase in λi reduces the opportunity cost of defaulting
in regime i, and hence narrows the gap between the default thresholds in the two regimes.
This effect is illustrated by Figure 2, which plots the ratio of the two default thresholds as
a function of the persistence parameter in the contraction regime L.

[Insert Figure 2 Here]

Importantly, the two default thresholds x∗L and x∗H exceed the default threshold asso-
ciated with a one-regime model that would be calibrated during an expansion (i.e. with
λH = 0 and yt = yH for all t ≥ 0).6 This feature of the model is represented in Figure 3,
which plots the selected default thresholds as a function of the coupon payment c. Because
the probability of default is increasing in the default threshold, Figure 3 implies that the
two-regime model is associated with estimates of the probability of default that are (1)
higher than those associated with the one regime model calibrated in a boom and (2) lower
than those associated with the one regime model calibrated in a recession. This finding
has several important implications for financial institutions. First, as noted by Allen and
Saunders (2002), previous “models’ overly optimistic estimates of default risk during boom
times reinforces the natural tendency of banks to overlend just at the point in the business
cycle that the central bank prefers restraint.” Our model shows that by recognizing the
impact of macroeconomic cycles, a simple two-regime model can help mitigate this effect.
Second, because credit risk models also determine the amount of reserves of capital a bank
should hold (and hence the amount of capital a bank can allocate to the real side of the
economy), our model should also mitigate the cyclical cash constraints effects that show
up in the lending process by reducing the estimates of the probability of default when the
economy is in a recession.

[Insert Figure 3 Here]

While some of the above arguments are familiar from the contingent claims literature,
the present model delivers a richer set of default policies than traditional contingent claims
models. Notably, when the aggregate shock can shift between discrete states at random
times, default by firms in a common market or industry can arise simultaneously [see also

6This follows from the following arguments. Let eH(x, c) denote equity value for the one-regime model
with yt = yH for all t. Then, equation When the firm’s operating cash flows are given by Eq. (45) implies
that ei(x, c) < eH(x, c), i = H,L. Thus, the value matching condition implies that 0 = ei(x

∗
i , c) < eH(x∗i , c).

Since eH(x, c) is increasing in x, it follows that the default threshold for the one regime model with yt = yH

must be lower than x∗i . Similarly, one can show that the default threshold for the one regime model with
yt = yL is higher than x∗i .
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Giesecke (2002), Driessen (2005) and Cremers et al. (2005)]. This clustering of defaults
will happen when the idiosyncratic shock of several firms belong to the transient region
and the aggregate shock shifts from yH to yL (thereby triggering an immediate default of
these firms). Importantly, in the standard model with a single risk factor, a clustering of
defaults is unlikely to occur with the sequential exercise of options to default, unless firms
are identical. However, a standard diffusion model with stochastic volatility as a second
aggregate risk factor could also be used to model joint defaults. In our model the aggregate
risk factor can only take two values, and hence implies a common systemic jump to default.

4.3 Optimal leverage and debt capacity

We now turn to the analysis of leverage decisions. Within our setting, the leverage ratio is
defined by:

Li(x, c,m, p) ≡ di(x, c,m, p)

vi(x, c)
i = L,H. (46)

While default policy is selected by shareholders to maximize equity after the issuance of
corporate debt (and hence maximizes ei (·)), debt policy maximizes ei (·) plus the proceeds
from the debt issue, i.e. vi(·) ≡ ei(·) + di(·) for i = L,H. Because firm value depends on
the current regime, so do the selected coupon rate and leverage ratio. The coupon rate
selected by shareholders is the solution to the problem: maxc vi(x, c). Denote the solution
to this problem by c∗i (x) — we assume that this solution is unique and verify that conjecture
in the simulations. Optimal leverage then equals L∗i (x,m, p) ≡ Li(x, c

∗
i (x),m, p). In the

simulations below we compute optimal leverage assuming that the recovery rate does not
depend on the regime.

In the base case environment, the value maximizing leverage ratio is equal to 19.72%
in a recession and 16.61% in a boom. Thus within our model, leverage is countercyclical.
This feature of the model is consistent with the evidence reported by Korajczyk and Levy
(2003). The countercyclical nature of leverage results from two countervailing effects.
First, regime shifts affect the firm’s default risk. Second, regime shifts change the present
value of future cash flows. In particular, the coupon rate — which determines the book
value of debt — in the expansion regime exceeds the coupon rate in the contraction regime,
reflecting the additional debt capacity provided by a lower default risk. At the same
time however, the present value of future cash flows is greater in the expansion regime,
increasing the denominator ofWhen the firm’s operating cash flows are given by Eq. (46). In
our model, the second effect always dominates the first, generating the countercyclicality in
leverage.7 Importantly, the fact that the coupon is regime dependent alleviates somewhat

7Given that we assume the default-riskfree interest rate is constant, it would be potentially interesting,
but technically challenging, to extend our regime-switching model to procyclical variations in interest rates.
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the difference between default thresholds and debt capacities in booms vs. recessions (see
below).

[Insert Figure 4 Here]

Because firm value depends on the various dimensions of the firm’s environment, so does
the leverage ratio selected by shareholders. Consider for example the impact of volatility
on the firm value-maximizing leverage ratio. In contingent claims models of the levered
firm, the volatility parameter provides a measure of bankruptcy risk. This in turn implies
that this parameter affects both expected bankruptcy costs and the tax advantage of debt
— the greater volatility, the shorter the time period over which the firm benefits from the
tax shield. Since optimal capital structure reflects a trade-off between these two quantities
(recall that in our model investment policy is fixed), optimal leverage depends crucially
on the level of the volatility parameter. In particular, an increase in volatility typically
raises default risk and hence reduces the value-maximizing debt ratio. Table 2 provides
comparative statics showing the impact of volatility on the quantities of interest. Data
in Table 2 and Figure 4 reveal that the selected coupon rate and leverage ratio are very
sensitive to the values of the volatility parameter. For example, as volatility increases from
20% to 30%, optimal leverage in the expansion regime goes down from 21.03% to 13.24%.

Table 2 Contraction regime Expansion regime
Coupon Leverage Coupon Leverage

Base 0.1196 19.72 0.1206 16.61

σ = 0.20 0.1513 24.97 0.1523 21.03
σ = 0.30 0.0958 15.70 0.0967 13.24

λL = 0.10 0.1064 19.91 0.1082 15.98
λL = 0.20 0.1289 19.57 0.1295 17.02

T = 3 0.0910 15.31 0.0913 12.83
T = 7 0.1453 23.39 0.1473 19.83

Consider next the impact of the persistence in regimes on financing decisions. numer-
ical results reported in Table 2 indicate that the persistence in regimes is an important
determinant of value-maximizing financing policies. For example, as λL — an indicator of
the (non) persistence of regime L — increases from 0.1 to 0.2, it is optimal for shareholders
to increase the optimal coupon payment in regime L by 21% (from 0.1064 to 0.1289). Data
in Table 2 and Figure 4 also reveal that an increase in λi decreases optimal leverage since
firm value itself depends on the persistence in regimes. Because of the very nature of the
model, a change in λi affects quantities in both regimes. Maturity also has a significant

Inutitively, a procyclical interest rate process will attenuate the present value effect.
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impact on financing decisions. In our model, a reduction in the maturity of the debt con-
tract implies an increase in the debt service and thus an increase in the probability of
default. The optimal response for the firm is to issue less debt. Simulation results reported
in Table 2 show for example that as the average debt maturity T decreases from 7 to 3
years, the firm optimally reduces its leverage ratio from 19.8% to 12.8% in the expansion
regime. Finally, and as illustrated by Figure 4, other standard comparative statics apply
within our model, so we do not report them.

[Insert Figure 5 Here]

An alternative expression for the variations in debt policy that may arise because of
changes in macroeconomic conditions relates to their impact on the firm’s debt capacity. In
this paper, we define debt capacity as the maximum amount of debt that can be sold against
the firm’s assets. Arguably, if default clusters can arise in a recession, the expected recovery
rate on the firm’s assets is likely to be lower than the expected recovery rate in a boom
since the industry peers are likely to be experiencing problems themselves (see Shleifer and
Vishny (1992) for a theoretical argument and Acharya, Bharath, and Srinivasan (2003) for
evidence). Thus, we report in Figure 5 the debt capacity of the firm for different recovery
rates in a recession. Because default risk is lower in an expansion than in a contraction,
the debt capacity of the firm is greater when the economy is in an expansion. In the base
case environment for example, the maximum value of corporate debt that could be sold in
a boom is 15% larger than the maximum value that could be sold in a contraction. As the
recovery rate in the contraction regime decreases, this difference between regimes increases
and exceeds 40% when αL = 0.2.

4.4 Term structure of credit spreads

We now turn to the analysis of credit spreads on corporate debt. Credit spreads on newly
issued debt are measured by the following expression:

csi(x, c,m, p) =
c

di(x, c,m, p)
− r. (47)

Figure 6 examines the credit spread of newly-issued debt as a function of average debt
maturity T , for alternative leverage ratios when the recovery rate does not depend on the
regime. For highly levered firms, credit spreads are high, but decrease as the average debt
maturity T increases beyond one year. For medium-to-high leverage ratios, credit spreads
are hump-shaped; that is, intermediate term debt promises higher yields than either short
or long term corporate debt. Credit spreads of low leverage firms are low, but increase
with maturity T .

[Insert Figure 6 Here]
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In contrast to previous contingent claims models, our framework can produce non-trivial
credit spreads for short term corporate debt issues [see also Duffie and Lando (2001) and
Zhou (2001)]. In the base case environment, credit spreads are relatively close to zero
for short term debt when the economy is in a boom. However, in a recession very short
term credit spreads taper off at around 20 to 200 basis points in case of medium to high
leverage. As a result, the slope of the term structure is steeper at the short end in booms
than in recessions. This result obtains because with regime shifts investors are always more
uncertain about the nearness of default. The figure also reveals that in a recession, credit
spreads on debt that was initially issued in a boom exceed those prevailing during a boom
by up to 150 basis points.

Let us now turn to analyzing the determinants credit spreads. Consider first volatility.
Figure 7 indicates that credit spreads increase with the volatility of cash flows from assets
in place. Within the present model, volatility has two effects on credit spreads. First, for
a given coupon payment, the probability of default and, hence the cost of debt, increases
with the volatility parameter σ. Second, because the cost of debt increases with σ, the
optimal response for shareholders typically is to issue less debt. Numerical results indicate
that the first effect dominates, so that credit spreads increase with volatility.

[Insert Figure 7 Here]

Consider next the growth rate of cash flows. Again, the impact of this parameter on
credit spreads at optimal leverage results from two opposite effects. First, for a given
coupon payment, the default threshold selected by shareholders decreases with µ and so do
expected bankruptcy costs. Second, because the cost of debt decreases with µ, it is optimal
for shareholders to issue more debt. Numerical results reported in Figure 7 indicate that
the first effect dominates so that credit spreads decrease with the growth rate of cash flows.
Numerical results also reveal that, because lower recovery rates imply a lower leverage level,
credit spreads at optimal leverage levels increase when recovery rates decrease. (Obviously,
for any given debt level credit spreads increase with liquidation costs.) Other standard
comparative statics apply, so we do not report them.

5 Dynamic capital structure

In this section, we extend the basic model to allow for dynamic capital structure choice.
To simplify the analysis, we presume throughout the section that m = 0. In addition,
we follow Fries, Miller, and Perraudin (1997) and Goldstein, Ju, and Leland (2001) by
considering that the firm can only adjust its capital structure upwards.8 Specifically, we

8The analysis can be extended to incorporate finite maturity debt and downward restructurings along
the lines of Leland (1998). As discussed in Goldstein, Ju and Leland (2001), while in theory management
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presume that there exists two thresholds xUH and x
U
L , x

U
L > xUH , such that the firm increases

its coupon payment once operating cash flows reach yix
U
i in regime i. We also consider

that whenever the firm issues debt, it incurs a proportional flotation cost ι.

The scaling feature underlying our model permits the adoption of the dynamic capital
structure formulation developed by Leland (1998) and Goldstein, Ju, and Leland (2001).
To see this, observe that when m = 0, the default thresholds x∗H and x∗L are linear in c.

In addition, the optimal coupon rates c∗H and c∗L are also linear in x.9 This implies that
if two firms A and B are identical except that their initial values of idiosyncratic shocks
differ by a factor xB0 = ρix

A
0 in regime i = H,L, then the optimal coupon rate in regime i,

cBi = ρic
A
i , the optimal default threshold, x

∗B
i = ρix

∗A
i , and every claim in regime i will be

larger by the same factor ρi. For the dynamic model, the scaling feature implies that since
at the time of a restructuring the value of the idiosyncratic shock in regime i, xU1i = ρix0,

is a factor ρi larger than its time 0 initial level x0, it will be optimal to choose c
1
i = ρic

0
i ,

xD1i = ρix
D0
i , xU1i = ρix

U0
i , and all claims in regime i will scale upward by the factor ρi.

We will now use this scaling property of the model to solve for optimal dynamic capital
structure. In our model firm value is equal to the value of unlevered assets plus the tax
benefit of debt minus bankruptcy and flotation costs. Thus, we can write the value of the
firm in regime i as:

vi(x, c) = Ai(x) + TBi (x, c)−BCi (x, c)− (ICi (x, c) + ιPi), (48)

where TBi (x, c) is the total tax benefit in regime i, BCi (x, c) are the total expected
bankruptcy costs in regime i, ιPi are the initial flotation costs in regime i, and ICi (x, c)

is the present value of the flotation costs paid by the firm when restructuring its capital
structure. Similarly, we can write the value of equity in regime i as: ei(x, c) ≡ vi(x, c) −
Di (x, c), where Di (x, c) is the value of debt in regime i. The default threshold selected by
shareholders in regime i satisfies the smooth-pasting condition:

e0i (x
∗
i , c) = 0, (49)

can both increase and decrease future debt levels, Gilson (1997) finds that transaction costs discourage debt
reductions outside of Chapter 11. In addition, the fact that equity prices tend to trend upwards makes
the option to issue additional debt more valuable that the option to repurchase outstanding debt. Finally,
in this model (as in Leland, 1998), increasing maturity always increases firm value by increasing its debt
capacity. Hence the optimal policy is to issue infinite maturity debt, i.e. to set m = 0.

9This follows from the following arguments. Eqs. (B.3)-(B.6) in the Appendix imply that A = c1−ξA0,
B = c1−γB0, C = c1−β1C0,D = c1−β2D0, where A0, B0, C0, and D0 are independent of c. Thus, Eqs. (B.1)-
(B.2) imply that eH and eL are homogeneous of degree one in x and c. Similarly, debt values dH and dL are
homogeneous of degree one in x and c. This in turn implies that firm value has this homogeneity property
in regime i = H,L. Therefore, the optimal coupon rate in regime i is linear in x.
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where derivatives are taken with respect to x. Shareholders’ objective is then to choose
ci, ρi = xUi /x0 to maximize firm value subject to the above smooth pasting condition and
the requirement that debt is issued at par. That is, we allow the firm to choose different
financing and restructuring strategies depending on the prevailing regime.

We report in Table 3 numerical results that rely on the solution presented in Appendix
C when the value of the aggregate shock is yH (i.e. the expansion regime). As in section
4, similar results with lower coupon payments and higher leverage ratios obtain in the
contraction regime. Table 3 underlines the following features of the dynamic model.

First, the possibility to adjust capital structure dynamically increases firm value and the
associated gain decreases with the magnitude of flotation costs, as suggested by economic
intuition. While the potential gain reported in Table 3 is low, this essentially results from a
low tax benefit of debt in our base case environment. As the tax benefit of debt increases,
the potential increase in firm value gets larger. For example, when the marginal corporate
tax rate is 35% and flotation costs are 1%, the value of the unlevered firm is 9.8, the value
of a levered firm following a static capital structure policy is 11.15, and the value of a
levered firm following a dynamic capital structure policy is 11.73. Thus, the possibility
to issue debt increases firm value by 14% in the static model and by 20% in the dynamic
model, compared with an unlevered firm.

Table 3 Expansion ι = 0.001 ι = 0.005 ι = 0.01 ι = 0.015

Dynamic Firm Value 13.35 13.30 13.25 13.20
Model Leverage 25.96 27.70 28.37 28.51

Coupon 0.248 0.262 0.264 0.265
xUH 1.43 1.87 2.25 2.59
xUL 1.49 1.96 2.35 2.70
xDH 0.11 0.12 0.12 0.17
xDL 0.16 0.17 0.17 0.17

Static Firm Value 13.07 13.06 13.04 13.01
Model Leverage 36.24 35.64 34.87 34.06

Credit Spreads 162 159 154 150
xUH NA NA NA NA
xUL NA NA NA NA
xDH 0.16 0.16 0.15 0.14
xDL 0.23 0.22 0.21 0.20

A second interesting feature of the results reported in Table 3 is that the default thresh-
olds in the dynamic model are always lower than the default thresholds in the static model.
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This feature results from two separate effects. First, the debt policy of the firm is more
conservative in the dynamic model and thus the opportunity cost of remaining active is
lower. Second, because of the options to increase leverage in the future, firm value is more
valuable and it is thus optimal for shareholders to postpone the decision to default.

The third interesting feature of the data reported in Table 3 is that, consistent with
economic intuition, the restructuring thresholds increase with flotation costs. In addition,
because the tax advantage of debt is greater when yt = yH than when yt = yL, the
restructuring thresholds satisfy xUH < xUL . This result has several implications. First,
it implies that firms should adjust their capital structure more often in booms than in
recessions since the expected time between restructurings is decreasing with the value
of the restructuring threshold. Second, it also implies that, holding investment policy
fixed, firms should adjust their capital structure by smaller amounts in booms than in
recessions.10 Indeed, suppose that the firm makes its initial financing decision when the
economy is in an expansion and selects the coupon level c0H . Then, if the process x first
reaches xUH in a boom, the firm raises debt so that its new coupon is c1H = c0Hx

U
H/x0. If

the process x first reaches xUL in a recession, then the firm raises a larger debt amount so
that its new coupon is c0Hx

U
L/x0 > c1H . If the firm is in a recession regime when making its

first financing decision, then the firm issues an initial debt contract with a smaller coupon
c0L. Then, the above argument goes through with c0L replacing c

0
H .

Finally, it should be noted that the firm’s optimal leverage ratio is lower in the dynamic
model than in the static model. This is due to the fact that we only consider the possibility
to increase leverage in the future [a similar point is made in Goldstein, Ju, and Leland
(2001)]. When both upward and downward leverage adjustment are allowed, the leverage
ratio in the dynamic model is closer to that of the static model. It should also be noted
that in the dynamic model leverage increases with flotation costs while in the static model
leverage decreases with flotation costs. The latter effect results from the greater costs of
issuing debt that reduces optimal leverage in the static model. The former effect is due to
the fact that as adjustment costs increase, the optimality (and likelihood) of future changes
in leverage decreases. Thus, the optimal response for the firm is to issue an amount of debt
that is closer to that of the static case.
10Drobetz and Wanzenried (2004) use a dynamic adjustment model and panel methodology to provide a

direct test of this hypothesis on a sample of 90 Swiss firms over the 1991-2001 period. Basing their tests
on the dynamic panel data estimator suggested by Arellano and Bond (1991), Drobetz and Wanzenried
demonstrate that the speed of adjustment toward optimal capital structure depends on the stage of the
business cycle. In particular, they demonstrate using popular business cycle variables that the speed of
adjustment to the target is faster when economic prospects are better.

23



6 Conclusion

When operating cash flows depend on current economic conditions, firms should adjust
their policy choices to the position of the economy in the business cycle phase. While this
basic point has already been recognized, its implications have not been fully developed.
In this paper, we present a contingent claims model of the levered firm where operating
cash flows depend on the realization of both an idiosyncratic and an aggregate shock (that
reflects the state of the economy). With this model, we show that:

1. When the aggregate shock can shift between different states, shareholders’ optimal
default policy is characterized by a different threshold for each state. Moreover,
because the states are related to one another, the value-maximizing default policy in
each state reflects the possibility for the firm to default in the other states.

2. Under this policy, default can be triggered either because the idiosyncratic shock has
reached the default threshold in a given regime or because of a change in the value
of the aggregate shock. As we argue in the paper, the first type of default-triggering
event is unlikely to explain the clustering of exit decisions observed in many markets.
By contrast, the second type provides the ground for such phenomena.

3. The leverage ratios generated by the model are in line with the leverage ratios ob-
served in practice. In addition, the model predicts that market leverage should be
countercyclical, consistent with the evidence reported by Korajczyk and Levy (2003).

4. The credit spreads generated by the model are in line with those observed in practice.
For any given debt level, credit spreads are higher in a recession than in a boom. The
change in credit spreads following a change in the value of the aggregate shock can
be substantial, reaching up to 120 basis points for financially distressed firms. In
addition, the term structure of credit spreads produced by the model encompasses
potentially substantial short term credit spreads.

5. As conjectured by Shleifer and Vishny (1992), the firm’s debt capacity depends on
current economic conditions. Firms typically will be able to borrow more funds in a
boom, even assuming a constant loss given default. If the recovery rate is procyclical,
the debt capacity of the firm in a boom can be up to 40% larger than the debt capacity
of that same firm in a contraction.

6. When the firm can adjust its capital structure dynamically, both the pace and the
size of the adjustments depend on current economic conditions. In particular, firms
should adjust their capital structure more often and by smaller amounts in booms
than in recessions.
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While our model generates implications that are consistent with the available empirical
evidence, it also provides grounds for future empirical work. In particular, while there
is already some evidence that firms financing decisions are regime dependent, there is
relatively little work on the pace and size of capital structure changes across business cycle
regimes. Huang and Ritter (2004) find using CRSP and Compustat data that “the real
GDP growth is positively associated with the likelihood of debt issuance, but is not reliably
related to the likelihood of equity issuance.” Drobetz and Wanzenried (2004) provide a
direct test of our predictions on the pace of capital structure changes on a sample of 91
Swiss firms. Consistent with our hypothesis, they find that macroeconomic conditions
affect the speed of adjustment to target leverage. In particular, the speed of adjustment
is higher when the term spread is higher, i.e. when economic prospects are good. Finally
de Haas and Peters (2004) also find that “higher GDP growth increases the adjustment
speed [to target capital structure] in Estonia, Lithuania, and Bulgaria.” More generally,
empirical work on this topic using larger data sets is called for. We leave this issue for
future research.
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Appendix

A. Finite maturity debt value

To solve the system of ODEs (12)-(13) , define the following functions: g ≡ dH − dL and
h ≡ λLdH + λHdL. We then have the following system of equations on the region x ≥ x∗L:

(r +m+ λL + λH)g (x) = µxg0 (x) +
σ2

2
x2g00 (x) (A.4)

(r +m)h (x) = µxh0 (x) +
σ2

2
x2h00 (x) + (λL + λH) (c+mp) (A.5)

The general solutions to Eqs. (A.2) and (A.3) are:

g (x) = G1x
γ +G2x

γ0 , (A.6)

h (x) = H1x
ξ +H2x

ξ
0
+ (λL + λH) (c+mp) / (r +m) , (A.7)

where γ and γ0 are the negative and positive roots of the quadratic equation

r +m+ λL + λH − µγ − σ2

2
γ(γ − 1) = 0, (A.8)

ξ and ξ
0
are the negative and positive roots of the quadratic equation

r +m− µξ − σ2

2
ξ(ξ − 1) = 0, (A.9)

and G1, G2, H1, and H2 are constant parameters. The linear growth conditions

lim
x↑∞

x−1g (x) <∞ and lim
x↑∞

x−1h (x) <∞ (A.10)

imply G2 = H2 = 0. Thus, using Eqs. (A.3), (A.4), and (A.7), we get

dH =
λHg + h

λH + λL
, and dL =

h− λLg

λH + λL
. (A.11)

Rearranging gives the desired expressions for debt value.

B. Default policy when m = 0

When m = 0, by Propositions 1-3, the value of equity satisfies

eL (x, c) = Axξ − λLBx
γ + (1− τ)

³
KLx− c

r

´
, on x ≥ x∗L (B.1)

and

eH (x, c) =

(
Axξ + λHBx

γ + (1− τ)
¡
KHx− c

r

¢
, x ≥ x∗L,

Cxβ1 +Dxβ2 + (1− τ)
³

xyH
r−µ+λH − c

r+λH

´
, x∗H ≤ x ≤ x∗L,

(B.2)
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In these equations γ, ξ, β1, β2, KL, KH , are defined as in Proposition 2 and A, B, C, and
D are given by

A =
(1− τ)

£
(γ − 1)KLx

∗
L − γ c

r

¤
(ξ − γ)

¡
x∗L
¢ξ , (B.3)

B =
(1− τ)

£
(ξ − 1)KLx

∗
L − ξ cr

¤
λL (ξ − γ)

¡
x∗L
¢γ , (B.4)

C =
(1− τ)

h
(β2 − 1) x∗HyH

r−µ+λH − β2
c

r+λH

i
(β1 − β2)

¡
x∗H
¢β1 , (B.5)

D =
(1− τ)

h
(β1 − 1) x∗HyH

r−µ+λH − β1
c

r+λH

i
(β2 − β1)

¡
x∗H
¢β2 . (B.6)

Defining R ≡ x∗L/x
∗
H and plugging the above expressions for A, B, C, and D into the

continuity and smoothness conditions

lim
x↓x∗L

eH (x, c) = lim
x↑x∗L

eH (x, c) , (B.7)

lim
x↓x∗L

e0H (x, c) = lim
x↑x∗L

e0H (x, c) , (B.8)

yields

x∗H = c

1
r

ξ
ξ−γ

³
1 + λH

λL

´
− 1

r+λH

³
1 + β2R

β1−β1Rβ2

β1−β2

´
RKL
ξ−γ

³
γ − 1 + (ξ − 1) λHλL

´
+RKH − yH

r−µ+λH
³
R+ (β2−1)Rβ1−(β1−1)Rβ2

(β1−β2)
´ , (B.9)

and

x∗L = c

1
r

³
ξγ

(ξ−γ) +
λHξγ

λL(ξ−γ)
´
− β1β2R

β1−β1β2Rβ2

β1−β2
1

r+λH

RKL

ξ(γ−1)+γ(ξ−1)λH
λL

(ξ−γ) +RKH − yH
r−µ+λH

³
R+ β1(β2−1)Rβ1−β2(β1−1)Rβ2

β1−β2

´ . (B.10)

C. Dynamic capital structure

In this section we allow the firm to adjust its capital structure upwards. We assume that in
case of a restructuring, the debt is called at par: Di

¡
xUi , c

¢
= Pi. Under this assumption,

the value of corporate debt satisfies the set of ODEs:

• On the region xUH ≤ x ≤ xUL ,

rDL (x) = µxD0
L (x) +

σ2

2
x2D00

L (x) + λL [PH −DL (x)] + c. (C.1)
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• On the region xDL ≤ x ≤ xUH ,

rDL (x) = µxD0
L (x) +

σ2

2
x2D00

L (x) + λL [DH (x)−DL (x)] + c, (C.2)

rDH (x) = µxD0
H (x) +

σ2

2
x2D00

H (x) + λH [DL (x)−DH (x)] + c. (C.3)

• On the region xDH ≤ x ≤ xDL ,

rDH (x) = µxD0
H (x) +

σ2

2
x2D00

H (x) + λH [αLAL (x)−DH (x)] + c. (C.4)

The boundary conditions associated with this system of equations are given by

Di

¡
xUi
¢
= Pi, i = L,H, (C.5)

Di

¡
xDi
¢
= αiAi

¡
xDi
¢
, i = L,H, (C.6)

lim
x↓xUH

DL (x) = lim
x↑xUH

DL (x) , (C.7)

lim
x↓xUH

D0
L (x) = lim

x↑xUH
D0
L (x) , (C.8)

lim
x↓xDL

DH (x) = lim
x↑xDL

DH (x) , (C.9)

lim
x↓xDL

D0
H (x) = lim

x↑xDL
D0
H (x) . (C.10)

Similarly, tax benefits are akin to a security (1) that pays a constant coupon τc as long
as the firm is solvent and (2) whose value is scaled by a factor ρi in regime i at the time of
the restructuring. Thus, tax benefits satisfy the system of ODEs:

• On the region xUH ≤ x ≤ xUL ,

rTBL (x) = µxTB0L (x) +
σ2

2
x2TB00L (x) + λL [ρHTBH (x0)− TBL (x)] + τc. (C.11)

• On the region xDL ≤ x ≤ xUH ,

rTBL (x) = µxTB0L (x) +
σ2

2
x2TB00L (x) + λL [TBH (x)− TBL (x)] + τc,(C.12)

rTBH (x) = µxTB0H (x) +
σ2

2
x2TB00H (x) + λH [TBL (x)− TBH (x)] + τc.(C.13)

• On the region xDH ≤ x ≤ xDL ,

rTBH (x) = µxTB0H (x) +
σ2

2
x2TB00H (x)− λHTBH (x) + τc. (C.14)
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The boundary conditions associated with this system of equations are given by

TBi

¡
xUi
¢
= ρiTBi (x0) , i = L,H, (C.15)

TBi

¡
xDi
¢
= 0, i = L,H, (C.16)

lim
x↓xUH

TBL (x) = lim
x↑xUH

TBL (x) , (C.17)

lim
x↓xUH

TB0L (x) = lim
x↑xUH

TB0L (x) , (C.18)

lim
x↓xDL

TBH (x) = lim
x↑xDL

TBH (x) , (C.19)

lim
x↓xDL

TB0H (x) = lim
x↑xDL

TB0H (x) . (C.20)

Expected bankruptcy costs are akin to a security whose only payoff is (1− α)Ai (x) at
the time of default. Thus, this security satisfies the system of ODEs:

• On the region xUH ≤ x ≤ xUL ,

rBCL (x) = µxBC 0L (x) +
σ2

2
x2BC 00L (x) + λL [ρHBCH (x0)−BCL (x)] . (C.21)

• On the region xDL ≤ x ≤ xUH ,

rBCL (x) = µxBC 0L (x) +
σ2

2
x2BC 00L (x) + λL [BCH (x)−BCL (x)] , (C.22)

rBCH (x) = µxBC 0H (x) +
σ2

2
x2BC 00H (x) + λH [BCL (x)−BCH (x)] .(C.23)

• On the region xDH ≤ x ≤ xDL ,

rBCH (x) = µxBC 0H (x)+
σ2

2
x2BC 00H (x)+λH [(1− αL)AL (x)−BCH (x)] . (C.24)

The boundary conditions associated with this system of equations are given by

BCi

¡
xUi
¢
= ρiBCi (x0) , i = L,H, (C.25)

BCi

¡
xDi
¢
= (1− αi)Ai (x) , i = L,H, (C.26)

lim
x↓xUH

BCL (x) = lim
x↑xUH

BCL (x) , (C.27)

lim
x↓xUH

BC 0L (x) = lim
x↑xUH

BC 0L (x) , (C.28)

lim
x↓xDL

BCH (x) = lim
x↑xDL

BCH (x) , (C.29)

lim
x↓xDL

BC 0H (x) = lim
x↑xDL

BC 0H (x) . (C.30)
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Finally, we assume that the firm bears proportional issuance costs ι when floating
corporate debt. We denote the present value of those costs exclusive of the initial issuance
costs by IC (x, c). This function satisfies the system of ODEs:

• On the region xUH ≤ x ≤ xUL ,

rICL (x) = µxIC 0L (x) +
σ2

2
x2IC 00L (x) + λL [ρH (ICH (x0) + ιPH)− IC (x)] . (C.31)

• On the region xDL ≤ x ≤ xUH ,

rICL (x) = µxIC 0L (x) +
σ2

2
x2IC 00L (x) + λL [ICH (x)− ICL (x)] , (C.32)

rICH (x) = µxIC 0H (x) +
σ2

2
x2IC 00H (x) + λH [ICL (x)− ICH (x)] . (C.33)

• On the region xDH ≤ x ≤ xDL ,

rICH (x) = µxIC 0H (x) +
σ2

2
x2IC 00H (x)− λHICH (x) . (C.34)

The boundary conditions associated with this system of equations are given by

ICi

¡
xUi
¢
= ρi (ICi (x0) + ιPi) , i = L,H, (C.35)

ICi

¡
xDi
¢
= 0, i = L,H, (C.36)

lim
x↓xUH

ICL (x) = lim
x↑xUH

ICL (x) , (C.37)

lim
x↓xUH

IC 0L (x) = lim
x↑xUH

IC 0L (x) , (C.38)

lim
x↓xDL

ICH (x) = lim
x↑xDL

ICH (x) , (C.39)

lim
x↓xDL

IC 0H (x) = lim
x↑xDL

IC 0H (x) . (C.40)

A complete solution to the above ODEs is available from the authors upon request.
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Figure 1: Optimal default policy. Figure 1a represents the equity value-maximizing
default policy for m = 0 in each regime i as a function of c. This default policy requires the
firm to default on its debt obligations the first time xt reaches x∗i . Figure 1b represents the
impact of a change in macroeconomic conditions on the value-maximizing default policy.
There exists a region for the state variable x for which a shift from the expansion regime
to the contraction regime triggers default.

x

c
F i g u r e  1 . a :  D e f a u l t  p o l i c y  i n  r e g i m e  i

D e f a u l t  R e g i o n

*
ix

N o - d e f a u l t R e g i o n

x

c
F i g u r e  1 .b :  S h a r e h o l d e r s ’ d e f a u l t  p o l i c y

*
Hx

*
Lx

D e f a u l t  i n  r e g i m e s  H  a n d  L

D e f a u l t  i n  
r e g i m e  L

N o - d e f a u l t
R e g i o n

35



Figure 2: Default thresholds ratio. Figure 2 plots the ratio R = x∗L/x
∗
H relating the

default thresholds in the two regimes as a function of the persistence of cash flows in the
contraction regime λL. Input parameter values are set as in the base case environment and
debt is initially issued in the expansion regime. In addition, we presume that the coupon
level is c = 0.2 and that λL ∈ [0.1, 0.7].
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Figure 3: Default thresholds in the two- vs. one-regime models. Figure 3 plots
the two default thresholds obtained in our model as well as the default threshold x∗exp
that would obtain in a standard model calibrated in the expansion regime as a function
of the coupon payment. The short-dashed line, the long-dashed line, and the solid line
respectively represent x∗L, x

∗
H , and x

∗
exp. Input parameter values are set as in the base case

environment. The coupon payment is varied between 0 and 1.
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Figure 4: Optimal leverage ratios. Figure 4 plots the optimal leverage ratio of the
firm as a function of (1) the growth rate of cash flows µ, (2) the volatility of cash flows σ,
(3) the persisitence of recessions λL, and (4) the recovery rate αH . The solid line represents
optimal leverage in a boom and the dashed optimal leverage in a recession.
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Figure 5: Debt capacity. Figure 5 plots the ratio of the debt capacity in a boom to
the debt capacity in a contraction as a function of the recovery rate in the contraction
regime. Debt capacity is defined as the maximum amount of debt that the firm can float.
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Figure 6: Term structure of credit spreads. Figures 6a and 6b plot the term
structure credit spreads on corporate debt. The five lines represent credit spreads resulting
from leverage ratios of 30%, 40%, 50%, 60%, and 70% in a boom. We use the same debt
structure (c,m, p) to compute spreads in a recession.

0 5 10 15 20
Debt Maturity

0

100

200

300

400

500

tiderC
sdaerpS

ni
mooB

Figure 6a: Term structure of credit spreads in a Boom
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Figure 6b: Term structure of credit spreads in a Recession
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Figure 7: Credit spreads. Figure 7 plots credit spreads on corporate debt for a leverage
of 40% as a function of (1) the growth rate of cash flows µ, (2) the volatility of cash flows
σ, (3) the persisitence of recessions λL, and (4) the recovery rate αL. Input parameter
values are set as in the base case environment.
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