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1 Introduction

Nonparametric techniques have been widely used in estimation and testing of econometric mod-

els. For example, Baltagi and Li (2002) propose to use the nonparametric series method to

estimate a semiparametric partially linear fixed effects panel data model, Racine et al (2005)

propose using a new smoothing method to estimate a multivariate conditional distribution func-

tion, Sun (2005) consider the problem of efficient estimation of partially linear quantile regres-

sion model, Fan and Rilstone (2001) propose a model specification test based on nonparametric

kernel method. Recently, varying coefficient modeling techniques have attracted much attention

among econometricians and statisticians. For theoretical development of varying coefficients

model with independent and stationary data, see Cai, Fan and Li (2000), Fan, Yao and Cai

(2003), Li, Huang, Li and Fu (2002), among others. The semiparametric varying coefficient

model specification has been used in various empirical studies. For example, Chou, Liu and

Huang (2004) examined health insurance and savings over the life cycle. Savvides, Mamuneas

and Stengos (2006) studied the problem of economic development and the return to human capi-

tal. Stengos and Zacharias (2006) investigated the intertemporal pricing and price discrimination

of the personal computer market. Jansen, Li, Wang and Yang (2008) studied the impact of U.S.

fiscal policy on stock market performance.

In this paper, we propose a new method of estimation and inference that extends the appli-

cation of semiparametric smooth coefficients models to the case where the dependent variable

is non-stationary because it contains a time trend regressor. Let Yt denote the non-stationary

dependent variable, and Xt be the set of stationary regressors. We also define Zt as a stationary

underlying state variable. To capture the time trend behavior of Yt, we use a time trend, denoted

by t, as part of the data generating process. In this paper, we propose two alternative empirical

specifications of a semiparametric smooth coefficients model. These specifications vary in their

treatment of the time trend.

We consider a semiparametric model which includes a stationary vector variable Xt1 and a
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time trend as regressors, all of them have varying smooth coefficients. The model is given by

Yt = XT
t β(Zt) + ut ≡ XT

t1β(1)(Zt) + t β(2)(Zt) + ut, (1)

where XT
t = (XT

t1, Xt2) = (Xt1, t) is of dimension 1 × d, β(1)(·) and β(2)(·) are smooth functions of

Zt and they are of dimension (d − 1) × 1 and 1 × 1, respectively. We assume that Xt1, Zt and ut

are all stationary variables, while Yt is non-stationary due to its time trend component.

Equation (1) differs from the varying coefficient model considered by Cai, Li and Park

(2009), and Xiao (2009) who consider the case that Xt contains integrated non-stationary re-

gressors (i.e., regressors have unit roots), while our model considers a time trend non-stationary

regressor.

We also consider a simpler model in which the trend variable enters the model linearly

Yt = XT
t1β(1)(Zt) + γ t + ut, (2)

where γ is a constant coefficient.

We subsequently discuss and apply this new semiparametric specification to evaluate em-

pirically whether credit are rationed in the U.S. credit market. We start with a simple model

with frictions in credit markets. We use general equilibrium techniques and consider a nonlinear

structural model that has the micro-foundations required for monetary growth economies. We

derive testable implications based on a reduced form model with respect to whether credit is ra-

tioned or not in equilibrium. We go directly from the model and its testable implications through

estimation and inference.

The rest of the paper is organized as follows. In Section 2, we describe our theoretical econo-

metrics model and we propose to use a local linear estimation method to estimate the coefficient

functions. We derive the asymptotic distribution for our proposed estimator. In Section 3 we

first present a theoretical model, then we study a reduced form model of credit rationing, discuss

its testable implication and then use a varying coefficient specification to investigate whether US

credit market is rationed. Section 4 concludes the paper. The proof of the asymptotic results is

given in an Appendix.
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2 Estimation of A Varying Coefficients Model

Our semiparmetric varying coefficient model is given by

Yt = XT
t β(Zt) + ut = XT

t1β(1)(Zt) + t β(2)(Zt) + ut, t = 1, ..., n, (3)

where Yt, Zt and ut are scalars, and Xt = (XT
t1, Xt2)T = (XT

t1, t). We only consider the scalar

Zt case since the extension to multivariate Zt involves fundamentally no new ideas but only

complicated notations.

2.1 Local Linear Estimation

We use a local linear approximation to approximate the unknown coefficient function. When Zt

is close to z, we use β(z) + β′(z) (Zt − z) to approximate β(Zt), where β′(z) = dβ(z)/dz. The local

linear estimator is defined via the following minimization problem.(̂
θ0
θ̂1

)
= argminθ0,θ1

n∑
t=1

[
Yt − XT

t θ0 − (Zt − z) XT
t θ1

]2
Kh(Zt − z), (4)

where Kh(u) = h−1K(u/h), K(·) is a kernel function and h is the smoothing parameter. It is

well known that θ̂0 = β̂(z) estimates β(z) and θ̂1 = β̂′(z) estimates β′(z). (4) has the closed form

expression for β̂(z) and β̂′(z) and is given by(
β̂(z)
β̂′(z)

)
=

 n∑
t=1

(
Xt

(Zt − z) Xt

)⊗2

Kh(Zt − z)

−1 n∑
t=1

(
Xt

(Zt − z)Xt

)
Yt Kh(Zt − z), (5)

where A⊗2 = A AT . We present the asymptotic theory regarding β̂(z) in the next subsection.

2.2 Asymptotic Properties

Recall that β̂(z) = (β̂(1)(z)T , β̂(2)(z))T , and that β̂(1)(z) and β̂(2)(z) are the coefficients of X1t and t,

respectively. We will show that β̂(1)(z) and β̂(2)(z) have different convergence rates. To establish

the asymptotic properties of β̂(z), we define Dn =

(
Id−1 0

0 n

)
, where Id−1 is an identity matrix of

dimension d− 1. We also define M0(Zt) = fz(Zt)E(Xt1XT
t1|Zt), M1(Zt) = (1/2) fz(Zt)E(Xt1|Zt) and

M2(Zt) = (1/3) fz(Zt), where fz(Zt) is the density function of Zt. Finally we define

S (z) =
(

M0(z) M1(z)
M1(z)T M2(z)

)
. (6)
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We also make the following assumptions.

(A1) (i) (Xt1,Zt) is a strictly stationary β-mixing process with size −2(2 + δ)/δ for some δ > 0,

ut is a martingale different process satisfying E(u2
t |Ft) = E(u2

t ) = σ2
u, and E(u4

t |Ft) < ∞, where

Ft is the sigma field generated by {Xs1, Zs}ts=−∞. (iii) β(·) has a bounded and continuous third

order derivative function.

(A2) (i) K(·) is a bounded symmetric density function with
∫

K(v)v2dv = µ2(K) being a finite

positive constant. (ii) h→ 0, nh2 → ∞ and nh7 = o(1) as n→ ∞.

The above regularity conditions are quite standard and provide sufficient conditions to es-

tablish our Theorem 1 below. However, they are not the weakest possible conditions. For ex-

ample, the conditional homoskedastic error assumption can be relaxed to allow for conditional

heteroskedastic errors.

THEOREM 1 Under Assumptions A1 - A2 given above, we have

√
nhDn

[̂
β(z) − β(z) − h2µ2(K)β′′(z)

]
→ N(0,Σβ(z)) in distribution,

where µ2 =
∫

K(v)v2dv, β′′(z) = d2β(z)/dz2, N(0,Σβ(z)) denotes a normal distribution with

mean zero and variance matrix given by Σβ(z) = σ2
uν0(K)S (z)−1, ν0(K) =

∫
K2(v)v2dv , and S (z)

is defined in (6).

A detailed proof of the above Theorem is provided in Appendix A.

Note that Theorem 1 shows that while the coefficient of Xt1 has the standard rate of con-

vergence: β̂(1)(z) − β(1)(z) = Op(h2 + (nh)−1/2) because var(β̂(1)(z)) = O((nh)−1), the coefficient

function of t has a much faster rate of convergence: β̂(2)(z)−β(2)(z) = Op(h2+ (n3h)−1/2) because

var(β̂(2)(z)) = O((n3h)−1) (due to the extra n factor at the lower diagonal position in matrix Dn).

3 An Empirical Application

3.1 Theory Background of Credit Rationing

In this section, we introduce the theory background of credit rationing. This is a simplification

and generalization of Hernandez-Verme (2004). In this economy, there is an adverse selection
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problem in the credit market. We let rt denote the real gross interest rate on loans. Borrowers

and Lenders each take rt as given.

We introduce reserve requirement as a first building block of the monetary policy in this e-

conomy. In general, these required reserves must be held in the form of currency, either domestic

or foreign. It seems reasonable to assume that the reserve requirement is binding, so henceforth

we suppose that this is the case.

The second building block is the evolution of the money supply. The monetary authority

directly control over the domestic money supply. The evolution of the money supply Mt is given

by

Mt = (1 + σ)Mt−1, (7)

where σ > −1 is the rate of money growth set exogenously by the Federal Reserve System. We

use πt =
pt−pt−1

pt−1
to denote the domestic rate of inflation at date t.

Clearing in the Credit Market with a binding reserve requirement and the evolution of the

money supply then requires that the equilibrium real interest rate on loans rt is an increasing

function of πt, the inflation rate at time t highlighting the role of the reserve requirement. 1 The

intuition behind this result is as follows: higher inflation rates reduce the return that banks re-

ceive from their currency-reserves holdings, and rt must increase for banks to be able to compete

for deposits in the market.

3.1.1 General Equilibrium and Alternative Credit Regimes

There are two possible credit regimes that we discuss in detail below: a Walrasian regime -

where credit is not rationed - and a Private Information regime - where credit is rationed.

A Walrasian Regime

We say that the economy is in a Walrasian regime at a particular point in time when a Wal-

rasian equilibrium occurs. Let kW
t denote the per capita capital stock when the economy is in a

1See equation (3) in Hernandez-Verme (2004) for more details.
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Walrasian equilibrium at date t. The economy is in a Walrasian equilibrium when

f ′(kW
t ) = rt, (8)

where f ′(k) = d f (k)/dk. This condition is fairly common in standard economic theory. In this

case, we say that credit is not rationed, since borrowers may borrow as much as they can at the

equilibrium interest rate rt.

In terms of comparative statics, we observe that when credit is not rationed, increases in rt

translate into increases in the marginal product of capital. Given standard decreasing marginal

products, then, kW
t = kW(rt) is a decreasing nonlinear function of rt. This means also that

yW
t = f

[
kW(rt)

]
, and, thus, output per capita in a Walrasian equilibrium is also decreasing in rt.

In summary, an increase in the equilibrium interest rate on loans reduces output per capita in

equilibria where credit is not rationed.

A Private Information Regime

When a Private Information equilibrium occurs at a particular date, we say that the economy

is in a Private Information regime, and because of adverse selection problem we observe that the

link between the marginal product of capital and the market interest rate on loans is broken. Let

kP
t denote the capital stock per capita when the economy is in a Private Information equilibrium

at date t. The economy is in a Private Information equilibrium when the following inequality

holds:

f ′(kP
t ) > rt. (9)

When Condition (9) holds, borrowers are willing to borrow arbitrarily large amounts at the

market interest rate on loans rt. In such a situation, lenders keep interest rate lower to reduce the

risk and avoid potential default problems, and this causes Credit Rationing.

Under the circumstances mentioned above, an increase in rt increases the amount of credit

available and borrowed and, thus, kP
t . Thus, kP

t = kP(rt) is an increasing nonlinear function

of rt. This means that yP
t = f

[
kP(rt)

]
, and output in a Private Information equilibrium is also

increasing in rt. In summary, an increase in the equilibrium interest rate on loans increases

output when credit is rationed, and a short-run version of Mundell-Tobin effect prevails.

6



3.1.2 Testable Implications of the Model

We can use a reduced-form equation that is consistent with the model presented above and that

can also be used to evaluate whether credit is rationed or not. In particular, for the sake of

parsimony, we use the following semi-parametric equation:

yt = β1(πt) + β2(πt) rt + β3(πt) t + ut, (10)

where the underlying state variable is the inflation rate, while β1(πt), β2(πt) and β3(πt) are smooth

coefficient functions that depend on the inflation rate πt. By using this flexible specification, we

can evaluate whether credit rationing is present or not, together with the region of the state-space

for which this is true. In particular, let β̂2(πt) denote the estimated function of β2(πt) = ∂yt/∂rt.

Then, the regions in which β̂2(πt) > 0 is associated with Private Information equilibria and,

thus, credit will be rationed. The complementary regions in which β̂2(πt) < 0 is associated with

Walrasian equilibria and credit will not be rationed.

3.2 Econometric Methodology
3.2.1 Model Specification

We start from the simple linear regression model

Yt = XT
t β + ZT

t γ + ut, t = 1, 2, ..., n, (11)

where XT
t is 1 × d vector with one component being 1, ZT

t is a 1 × q vector, and β and γ are

constant parameter vectors with dimensions d × 1 and q × 1, respectively. Equation (11) will

be the benchmark against which we will compare our results. The credit rationing example, the

specific linear model can be found in equation (16).

Our choice of specification of the empirical model is consistent with the simple theoretical

framework that we presented in the previous section. Thus, we propose to use the following

semi-parametric varying coefficient specification:

Yt = XT
t β(Zt) + ut, t = 1, 2, ..., n, (12)
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where the coefficient function β(Zt) is a d × 1 vector of unspecified smooth functions of the

underlying state variable Zt. For credit rationing example, the varying coefficient models we

used can be found in equation (14) and (15).

This model specification allows for a more flexible functional form and also avoids the “curse

of dimensionality” associated with a fully nonparametric model. Under the assumption that

model (12) is correctly specified, E(ut|Xt,Zt) = 0. Pre-multiplying both sides of ( 12) with Xt,

taking conditional expectation E(·|Zt = z) , and then solving for β(z) yields

β(z) =
[
E(XtXT

t |Zt = z)
]−1

E(XtYt|Zt = z). (13)

We next replace the conditional mean function in (13) by some nonparametric estimator, say

by the local linear kernel estimator, and we obtain a feasible estimator of β(z).

In our model, the dependent variable is the industrial production per capita, which we denote

as Yt. Since the industrial production per capita has an obvious time trend, the explanatory

variable Xt includes the time trend t. Xt also contains the growth rate of the real gross interest

rate on loans ∆ln(rt), since the real interest rate is nonstationary. The explanatory state variable

Zt is the inflation rate πt. Since the non-stationarity of industrial production per capita is caught

by the time trend, we redefine the coefficient smooth function of πt associated with the time

trend t as β3(πt). So, we can rewrite the model in (12) as

Yt = β1(πt) + β2(πt)∆ln(rt) + β3(πt) t + ut. (14)

The coefficient for the intercept, β1(πt), is a function of the underlying state-variable πt

(inflation rate), and so is the coefficient β2(πt) that measures the effect of the real interest rate on

the industrial production per capita at date t.

We obtain an alternative model specification when the time trend t enters the model linearly,

which means that the effect of the time trend is constant and independent of the state variable πt.

So, the smooth coefficient function of t, β3(πt), reduces to a constant parameter γ. Under these

conditions, the alternative nonlinear model with constant time trend becomes

Yt = γ t + β1(πt) + β2(πt)∆ln(rt) + ut (15)
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The corresponding linear regression model (11) is given by,

Yt = β1,0 + β2,0 ∆ln(rt) + β3,0 t + β4,0 πt + ut, (16)

where β j,0s ( j = 1, 2, 3, 4) are constant coefficients.

In the remainder of the paper we will refer the simple linear model in (16) as model 1, the

partially linear varying coefficient model (15) as model 2, and the general varying coefficient

model in (14) as model 3.

3.2.2 Model Specification Testing

As is standard in the literature, we first test whether the varying coefficient models 2 and 3

represent the data significantly better than the standard linear OLS model or model 1.

We start from the benchmark model 1, a linear regression model with time trend, as described

in (16). We use the Generalized Likelihood Ratio (GLR) test as suggested by Cai, Fan and Yao

(2000) to conduct model specification tests. Particularly, we test whether the linear specification

model is adequate for the data, with the linear model as the null hypothesis and one of the

varying coefficient models as the alternative. We do so first with model 3, and next with model

2. The test is based on the difference of the sums of squared residuals between the two competing

models as follows:

GLR =
∑n

t=1 û2
t −

∑n
t=1 ũ2

t∑n
t=1 ũ2

t
(17)

where ût is the residual from the null hypothesis linear model, and ũt is the residual from the

alternative smooth coefficient model. Typically, one rejects the null hypothesis of linearity when

large values for the GLR statistic are obtained.

We now turn to explain the multiple steps involved in this test. Cai, Fan and Yao (2000)

suggest using a bootstrap approach to evaluate the p-value of the test. In particular, they boot-

strapped the centralized residuals from the nonparametric fit instead of the linear fit, because the

nonparametric estimate of the residuals is consistent under both the null and alternative hypothe-

ses. We use u∗t to denote the bootstrap error - which is obtained following the fitted residual from

the varying coefficient model. The bootstrap error u∗t follows the ‘wild’ bootstrap distribution
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conditions (see Cai et al (2000) for more details). We then obtain the GLR statistics and critical

values via the following five steps:

Step 1: For each t = 1, 2, ..., n, we generate values for u∗t that satisfies the ‘wild’ bootstrap

distribution conditions. We then compute y∗t = XT
t β̂(πt) + u∗t , where XT

t = ( 1, ∆ln(rt), t ) for

t = 1, 2, ..., n.

Step 2: We obtain the least square estimator by using the bootstrap sample

β̂∗ols =

 n∑
t=1

X̃tX̃T
t

−1 n∑
t=1

X̃ty∗t , (18)

where X̃T
t = ( 1, ∆ln(rt), t, πt ) for t = 1, 2, ..., n. Next, we obtain the estimated bootstrap OLS

residuals by using û∗t = y∗t − X̃T
t β̂
∗
ols.

Step 3: We obtain the kernel estimator of β̂∗(πt) using the bootstrap sample, as

β̂∗(πt) =

 n∑
j=1

X jXT
j K

(π j − πt

h

)
−1 n∑

j=1

X jy∗jK
(π j − πt

h

)
. (19)

Then, we proceed to calculate the estimated bootstrap residuals using ũ∗t = y∗t − XT
t β̂
∗(πt).

Step 4: We compute the bootstrap statistic using

GLR∗n =
∑n

t=1 û∗2t −
∑n

t=1 ũ∗2t∑n
t=1 ũ∗2t

(20)

Step 5: We repeat steps 1- 4 a number of times, say B times, and obtain the empirical

distribution of the B test statistics of {GLR∗n, j}Bj=1. Let GLR∗n,(α) denote the αth percentile of the

bootstrap statistics. We then reject the null hypothesis at the significance level α if GLRn >

GLR∗n,(α) obtains.

3.3 Empirical Results
3.3.1 Data

In order to focus on the short run relationships described by our theoretical model, we use

monthly data. The following variables were obtained from the FRED data set of the Federal

Reserve Bank of St. Louis: the industrial production index (IPt), the bank prime loan rate (It),

the CPI (Pt), and population (POPt ). The data spans from January 1952 to January 2008 with
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a total of 673 monthly observations. We calculate the series of industrial production per capita,

IPPt, by using the industrial production index and population series as follows,

IPPt =
IPt

POPt
× 1, 000. (21)

The population is expressed in thousands of inhabitants. Therefore, IPPt is an index of

industrial production per million people, and we found it to be nonstationary. It is stationary after

detrending. We calculated the inflation rate (πt) from the CPI, by using πt =
(

Pt
Pt−1
− 1

)
× 100.

Next, we adjusted the Bank Prime Loan Rate series (It) by the inflation rate (πt), obtaining the

real gross interest rate rt, by using the formula rt =
1+It
1+πt

. We found the real gross interest

rate, rt, to be nonstationary. However, this estimation method requires stationary covariates, and

we proceeded to find a stationary representation of this series. Thus, accordingly, we took the

log difference of the real gross interest rate, ∆ln(rt) = ln(rt) − ln(rt−1) and found ∆ln(rt) to be

stationary.

3.3.2 Results of Model Specification Tests

For the model specification test, we use the methodology introduced in section 3.2.2. The null

hypothesis of the GLR test is that the linear model, model 1, fits the data best. We use different

types of nonlinear models as alternative hypothesis: model 2 and model 3.

In the Table 1 below, we present the bootstrap critical values in columns two through five.

In the sixth column, we display the the GLR statistics, and column seven reports the p-values.

The p-value for the linear model against model 3 is less than 0.001, while the p-value for the

linear model against model 2 equals 0.003. The testing results indicate the existence of strong

nonlinearities in the output, inflation and interest rate relationship.

Table 1: Results of Model Specification Tests

Models Critical Values GLR Prob.
1% 5% 10% 20%

Models 1 v.s. 2 0.041 0.036 0.033 0.029 0.046 0.003
Models 1 v.s. 3 0.053 0.049 0.045 0.040 0.088 0.000
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Our comparisons of model 2 and model 3 each against the linear model have thus verified

the presence of strong nonlinearity. However, we also need to take a step further: to treat model

2 as the null model and test it against the more general model 3. To do so, we used a test statistic

that was based on a similar GLR methodology (and a bootstrap procedure). The testing result

shows that we cannot reject the null hypothesis that model 2 is adequate against model 3 at any

conventional significant level. Therefore, our econometrics analysis will be based on the more

parsimonious model 2 in the remaining parts of this paper.

3.3.3 Estimation Results

In this section, we discuss the main traits of the estimated coefficient functions as well as the

economic intuition behind them. We present empirical evidence on the scope for credit rationing

in the U.S. credit market.

The Estimated Coefficient Functions

We present the estimation results of the partially linear varying coefficients model 2. Here,

we focus on the nonlinearities displayed by the estimated coefficient functions with respect to

the inflation rate. Figure 1 displays the estimated coefficient functions of model 2. Recall that

model 2 is represented by (15). We will denote the corresponding estimated functions by γ̂,

β̂1(πt) and β̂2(πt). The estimated value for the constant parameter γ is γ̂ = 0.0004, with an

associated standard error of 2.77 × 10−6. So that γ̂ is (highly) significantly different from zero.

This is expected because there is an obvious trend in the output data.

The first panel in Figure 1 displays β̂1(πt). In this model, β̂1(πt) represents the varying

intercept. In a standard linear regression, this coefficient would be constant and independent of

the inflation rate: its diagram would take the form of a perfectly horizontal line for all values of

πt. However, we observe that the shape of β̂1(πt) is somewhat closer to a V shape with β̂1(πt)

taking positive values between 0.095 and 0.118. Thus, β1(πt) is a nonlinear function in πt is

supported by Figure 1.

The second panel in Figure 1 displays the estimated coefficient function β̂2(πt) and it is of

particular importance to our analysis. One of the main hypotheses from our simple theoretical
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Figure 1: Coefficients of Model 2, Local Linear Estimator

model is that the interest rate on loans having a nonlinear effect on output per capita and this

effect depending on the level of the inflation rate. It is apparent that our hypothesis was verified

and that the effect of rt on Yt varies significantly for different values of πt, giving rise to threshold-

effects. One can see that the second panel in Figure 1 looks (roughly) like an inverse U (or V)

shape showing an obvious sign of nonlinearity.

Notice that the following transpires: for πt ∈ (−1,−0.6) and for πt ∈ (1.3, 1.8], the effect of

the interest rate on output per capita is negative. The economy is in Walrasian regime. Credit is

not rationed.

When πt ∈ (−0.6, 1.3), the effect of the interest rate on output per capita is positive. The

economy is in Private Information regime. Credit is rationed.

Evidence on the Scope for Credit Rationing

Most of the previous research on credit rationing in the U.S. credit market has focused on the

micro perspective. For example, Berger and Udell (1992) is based on the information of com-

mercial bank loan contracts; Petrick (2005) is based on the household data; Duca and Rosenthal

(1991) investigates credit rationing in the mortgage market.

In this paper, we supply a new perspective of how to look at the credit market at the aggre-

gate level, one that allows for private information and expectations to effectively constrain this

market. As we will show next, we find that the empirical evidence supports this opinion. In

particular, we estimate the Walrasian region and Private Information region based on short-run

macro data.
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Our results from Figure 2 indicates that there exist two threshold, πL and πH , for inflation.

The estimated values of πL and πH are −0.6% and 1.3%, respectively. Only when the monthly

inflation rate is sufficiently low (i.e. πt < −0.6%) or high enough (i.e. πt > 1.3%,) and thus

credit need not be rationed. However, for monthly inflation rates between −0.6% and 1.3%, the

incentive compatibility constraint bind and reducing the amount of credit available in the market.

Moreover, the severity of the adverse selection problem, seems to vary with the inflation rate as

well, explaining why the peaks occur in the function β̂2 (πt). As a final conclusion, we have that

the “indirect” effect of πt and Yt is nonlinear and non-monotonic, and it varies significantly for

different values of the monthly inflation rate indicating to some extent the information problem

in the U.S. credit market.

The analysis of the effects of inflation on output per capita is also of the utmost importance

in Macroeconomics (see Fisher (1993), Bullard and Keating (1995), Khan and Senhadji (2001),

and Drukker et al (2008).) Our approach differs from the standard in the use of semiparametric

estimation techniques, but our results are still comparable with the literature: we can also obtain

functions that describe the magnitude of the impact that πt has on Yt, given the nonlinear effects

of inflation.

Marginal Effects

We analyze the marginal effect of inflation as the partial derivative function of Yt with respect

to πt keeping the interest rate rt at a fixed value. When rt is fixed we have ∆ ln(rt) = 0. As a

result, the marginal effects function for Model 2 is given by

∂Yt

∂πt
|rt fiexed =

∂β̂1(πt)
∂πt

. (22)

One advantage of using the local linear estimation method is that, one also obtains the deriva-

tive estimates at the same time which we plot in Figure 2. From Figure 2, we can observe the

marginal effects vary nonlinearly with the inflation rate. For example, when the initial infla-

tion rate belongs to the interval [−0.8%,−0.5%), an increase of inflation of one percent point

reduces absolute output by 0.03 percentage points on average. However, as the initial inflation

rate changes and it belongs, say, to the intervals [0.0%, 0.5%) or [0.5%, 1.0%), the effect on

output is an increase of 0.0075 and 0.012 percentage points on average, respectively.
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We can make three points from these results. First, the partial marginal effects increase

with the inflation rate. Second, negative partial marginal effects are associated with rates of

inflation that are low enough. And, third, positive partial marginal effects are observed for rates

of inflation that are sufficiently high.
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Figure 2: Marginal Effects with Fixed Interest Rate

4 Conclusions

In this paper, we extend the standard semiparametric smooth coefficients model to allow for

nonstationary dependent variables by introducing a time trend among the regressors. We find the

varying coefficient associated with the time trend t and other stationary regressors have different

convergence rates. We establish the asymptotic properties of the new estimation.

We applied this new technique of estimation and inference to evaluate whether credit ra-

tioning is present in the U.S. credit market. We directly test the following hypotheses: 1) Infla-

tion is a key state variable that has nonlinear effects on output per capita; 2) The real interest rate

on loans has significant effects on output per capita that are nonlinear as well; 3) The nonlinear

coefficient associated with the interest rate can help detect the presence of credit rationing in the

U.S. market.

We found that the estimated smooth varying coefficients displayed strong nonlinearities with

respect to the inflation rate, verifying the adequacy of having used a semiparametric smooth

15



coefficient model, and also confirming our hypotheses. We showed that, in general, the marginal

effects of inflation on output per capita can be either positive or negative. Moreover, the marginal

effect function is a monotonically increasing and concave function of πt which display positive

values when the monthly inflation rate is high enough, but negative values otherwise.
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Appendix A: Proof of Theorem 1

Proof of Theorem 1:

First, note that the right hand side of (5) has the form of A−1
1n A2n, where

A1n =

 n∑
t=1

(
Xt

(Zt − z)Xt

)⊗2

Kh(Zt − z)


and

A2n =

n∑
t=1

(
Xt

(Zt − z)Xt

)
Yt Kh(Zt − z).

Define Hn =

(
1 0
0 h

)
⊗Dn. Then we can write HnA−1

1n A2n = HnA−1
1n HnH−1

n A2n = [H−1
n A1nH−1

n ]−1H−1
n A2n.

Thus, β̂(z) and β̂′(z) can be re-expressed as follows:

Hn

(
β̂(z)
β̂′(z)

)
= S n(z)−1 n−1

n∑
t=1

Kh(Zt − z) Yt

(
1

Zt,z,h

)
⊗

(
D−1

n Xt
)
, (A.1)

where S n = H−1
n AnH−1

n , Zt,z,h = (Zt − z)/h. By adding and subtracting terms we obtain

Yt = XT
t β(Zt) + ut, 1 ≤ t ≤ n,

= XT
t
(
β(z) + β′(z)(Zt − z) + β(Zt) − β(z) − β′(z)(Zt − z)

)
+ ut.

(A.2)

Plug (A.2) into (A.1), and we have,

Hn

(
β̂(z)
β̂′(z)

)
= Hn

(
β(z)
β′(z)

)
+ S n(z)−1 n−1

n∑
t=1

Kh(Zt − z)(
1

Zt,z,h

)
⊗

(
D−1

n Xt
) [

XT
t
(
β(Zt) − β(z) − β′(z)(Zt − z)

)
+ ut

]
= Hn

(
β(z)
β′(z)

)
+ S n(z)−1 n−1

n∑
t=1

Kh(Zt − z)(
1

Zt,z,h

)
⊗

(
D−1

n Xt
) [

XT
t
(
β(Zt) − β(z) − β′(z)(Zt − z)

)]
+ S n(z)−1 n−1

n∑
t=1

Kh(Zt − z)
(

1
Zt,z,h

)
⊗

(
D−1

n Xt
)

ut,

and

S n(z) = H−1
n A1nH−1

n

= n−1
n∑

t=1

Kh(Zt − z)
(

1
Zt,z,h

)⊗2

⊗
(
D−1

n Xt
)⊗2
=

(
S n,0(z) S n,1(z)
S n,1(z) S n,2(z)

)
,

where for j = 0, 1, 2, we use the notation

S n, j(z) =
1
n

n∑
t=1

Kh(Zt − z) Z j
t,z,h

(
D−1

n Xt
)⊗2
.
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Now, to facilitate the analysis of S n, j(z), we first express S n(z) as

S n, j(z) =
(

Fn, j,0(z) Fn, j,1(z)
Fn, j,1(z)T Fn, j,2(z)

)
, (A.3)

where (since (D−1
n Xt)T = (XT

t1, t/n))

Fn, j,0(z) =
1
n

n∑
t=1

Z j
t,z,h Xt1 XT

t1 Kh(Zt − z), Fn, j,1(z) =
1
n

n∑
t=1

Kh(Zt − z) Z j
t,z,h Xt1 (t/n),

and

Fn, j,2(z) =
1
n

n∑
t=1

Z j
t,z,h Kh(Zt − z)

(
t2/n2

)
.

Define

M0(Zt) = fz(Zt)E(Xt1XT
t1|Zt), M1(Zt) = (1/2) fz(Zt)E(Xt1|Zt) and M2(Zt) = (1/3) fz(Zt).

By noting that Xt1 and Zt are stationary and using the standard change-of-variable and a Taylor’s

expansion argument, we know that n−2 ∑n
t=1 t = (1/2)+O(n−1) and n−3 ∑n

t=1 t2 = (1/3)+O(n−1).

By the law of iterative expectation, we have

E[Fn, j,0(z)] = E
[
Z j

t,z,h Xt1 XT
t1 Kh(Zt − z)

]
= E

[
Z j

t,z,h E
(
Xt1 XT

t1|Zt
)

Kh(Zt − z)
]

=
1
h

∫ (Zt − z
h

) j
fz(Zt)E

(
Xt1 XT

t1|Zt
)

Kh(Zt − z)dZt

=

∫
v j M0(z)K(v)dv + O(h2)

= M0(z) µ j(K) + O(h2),

where µ j(K) =
∫

v jK(v)dvas defined before.

According to the same step as above, we have

E[Fn, j,1(z)] = M1(z) µ j(K) + O(h2), (A.4)

E[Fn, j,2(z)] = M2(z) µ j(K) + O(h2). (A.5)

By the kernel theory for the stationary mixing case (see Theorem 1 of Cai, Fan and Yao

(2000) for details) one can easily show that for l = 0, 1, 2 and j = 0, 1, 2,

Var
[
Fn, j,l(z)

]
= O((n h)−1).

Therefore,

Fn, j,l(z) = Ml(z) µ j(K) + Op(h2 + (nh)−1/2). (A.6)
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We have defined S (z) earlier. Recall equation (6):

S (z) =
(

M0(z) M1(z)
M1(z)T M2(z)

)
.

By definition of S (z) above, together with equation (A.6), (A.4), ( A.5) and (A.3), we have

S n, j(z) = µ j(K) S (z) + op(δn), (A.7)

where δn = h2 + (nh)−1/2. By noting that µ0(K) = 1 and µ1(K) = 0, we immediately obtain from

the definition of S n(z) (A.3), (A.6) and (A.7) that

S n(z) =
(

1 0
0 µ2(K)

)
⊗ S (z) + Op(δn). (A.8)

From (A.8), we immediately obtain that

S n,0(z)−1 = S (z)−1 + op(δn). (A.9)

S n,0(z) is the upper-left corner d × d matrix of S n(z). From (A.1), we have

Dn
[̂
β(z) − β(z)

]
≡ L1n + L2n, (A.10)

where

L1n = S n,0(z)−1 Bn(z), (A.11)

with

Bn(z) = n−1
n∑

t=1

Kh(Zt − z) D−1
n XtXT

t {β(Zt) − β(z) − (Zt − z)β′(z)},

and

L2n = S n,0(z)−1 n−1
n∑

t=1

Kh(Zt − z) ut D−1
n Xt.

Define,

Gn,0(z) = n−1
n∑

t=1

Kh(Zt − z) Xt1XT
t1 {β(1)(Zt) − β(1)(z) − (Zt − z)β′(1)(z)},

Gn,1(z) =
n∑

t=1

Kh(Zt − z) Xt1 (t/n) {β(2)(Zt) − β(2)(z) − (Zt − z)β′(2)(z)},

Gn,2(z) = n−1
n∑

t=1

Kh(Zt − z) (t/n)XT
t1 n{β(1)(Zt) − β(1)(z) − (Zt − z)β′(1)(z)},

Gn,3(z) = n n−1
n∑

t=1

Kh(Zt − z) (t2/n2) n{β(2)(Zt) − β(2)(z) − (Zt − z)β′(2)(z)},

so that

Bn(z) =
(

Gn,0(z) +Gn,1(z)
Gn,2(z) +Gn,3(z)

)
. (A.12)
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Similar to (A.6), (A.4) and (A.5), by the kernel theory and an application of Taylor’s expansion,

it is easy to show that

E[Gn,0(z)] = h2 M0(z)
[
µ2(K)

2
β′′(1)(z)

]
{1 + O(h)}

and Var[Gn,0(z)] = O((nh2)−1), so that

Gn,0(z) = h2 M0(z)
[
µ2(K)

2
β′′(1)(z)

]
{1 + Op(γn)},

where γn = h + (nh2)−1/2. Further, following the proof above, we can easily show that

Gn,1(z) = nh2 M1(z)
[
µ2(K)

2
β′′(2)(z)

]
{1 + Op(γn)},

Gn,2(z) = h2 M1(z)
[
µ2(K)

2
β′′(1)(z)

]
{1 + Op(γn)},

and

Gn,3(z) = nh2M2(z)
[
µ2(K)

2
β′′(2)(z)

]
{1 + Op(γn)}.

Plugging the above results into (A.12), we obtain

Bn(z) = h2 S (z) Dn

[
µ2(K)

2
β′′(z)

]
{1 + Op(γn)}. (A.13)

Substituting (A.13) into (A.11) and using (A.9) lead to

L1n = Dn h2 µ2(K)β′′(z) {1 + Op(γn)},

Therefore,

D−1
n L1n = h2µ2(K)β′′(z) + Op(h2γn). (A.14)

Finally, we consider L2n. Define

Tn(z) =

√
h
n

n∑
t=1

Kh(Zt − z)ut D−1
n Xt =

(
Tn,1(z)
Tn,2(z)

)
with

Tn,1(z) =

√
h
n

n∑
t=1

Kh(Zt − z) ut Xt1

and

Tn,2(z) =

√
h
n

n∑
t=1

(t/n) Kh(Zt − z) ut.

By combining the above expressions with (A.10) and (A.14), we obtain

√
n h Dn

[̂
β(z) − β(z) − h2µ2(K)β′′(z) + Op(h3)

]
= S n,0(z)−1 Tn(z). (A.15)
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To prove the asymptotic normality of the left hand side of (A.15), it suffices to establish the

asymptotic normality of Tn(z). Note that Tn,1 only involves stationary variables. Hence, by the

kernel estimation theory for stationary mixing data (see Theorem 2 of Cai, Fan and Yao (2000)

for details) we have

Tn,1(z)
d→ N(0, σ2

uν0(K) M0(z) ). (A.16)

where ν0(K) =
∫

K2(v)v2dv. Also, we have

Tn,2(z)
d→ N(0, σ2

uν0(K) M2(z) ) = N(0, ν0(K)M2(z) ). (A.17)

The covariance matrix is given by

Cov(Tn,1,Tn,2) = σ2
uh−1E[Kh(Zt − z)Xt1(t/n)] = σ2

uν0(K)M1(z) + O(h).

Therefore, a combination of (A.16) and (A.17) leads to

Tn(z)
d→ N(0,V),

where

V = ν0(K)
(

M0(z) M1(z)
M1(z)T M2(z)

)
= ν0(K)S (z).

Therefore, by Slusky’s theorem, we have

√
n h Dn

[̂
β(z) − β(z) − h2µ2(K)β′′(z)

] d→ N(0, ν0(K)S (z)−1).

Q.E.D.
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