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ABSTRACT

In this paper, we conduct a comprehensive study of tests of mean-variance spanning. We provide

both a comparison and a geometrical interpretation of three asymptotic tests (likelihood ratio,

Wald, and Lagrange multiplier) of mean-variance spanning under the regression based framework

of Huberman and Kandel (1987). For the case of normality, we provide the exact distributions

and a comprehensive power analysis of the three tests. For the general case, we provide the GMM

version of the spanning tests and evaluate their performance using simulation. In addition, we

compare the performance of the spanning tests under the regression approach with those under

the stochastic discount factor approach. Our results suggest that the two approaches have similar

properties when returns are normally distributed but the regression approach is superior to the

stochastic discount factor approach when returns follow a multivariate Student-t distribution.



In portfolio analysis, one is often interested in finding out whether one set of risky assets

can improve the investment opportunity set of another set of risky assets. If an investor chooses

portfolios based on mean and variance, then the question becomes whether adding a new set of

risky assets can allow the investor to improve the minimum-variance frontier from a given set of

risky assets. This question was first addressed in the literature by Huberman and Kandel (1987,

HK hereafter) in which they proposed a multivariate test of the hypothesis that the minimum-

variance frontier of a set of K benchmark assets is the same as the minimum-variance frontier of

the K benchmark assets plus a set of N additional test assets. Subsequent to HK’s study, different

tests were developed in the finance literature to address the question of mean-variance spanning

in different applications. Examples include Ferson, Foerster, and Keim (1993), DeSantis (1993),

Bekaert and Urias (1996), De Roon, Nijman, and Werker (2001), and Korkie and Turtle (2001).

In this paper, we aim at providing a complete understanding of various tests of mean-variance

spanning. We point out there are two major mistakes in applications of the widely used HK test

of spanning. The first mistake is that the test statistic is often incorrectly computed due to a typo

in HK’s original paper. The second mistake is that the HK test is incorrectly used for the single

test asset case (i.e., N = 1). In addition to the HK test, we also study other tests of spanning.

Statistically, the HK test is a likelihood ratio test. However, unlike the case of testing the CAPM

as in Jobson and Korkie (1982) and Gibbons, Ross, and Shanken (1989, GRS hereafter), the

likelihood ratio test is in general not the uniformly most powerful invariant test for testing mean-

variance spanning. Therefore, it is important not to consider just the likelihood ratio test, but also

consider other tests of spanning. Two alternative tests that we consider are the Wald test and the

Lagrange multiplier test. We compare their performance with the likelihood ratio test and present

geometrical interpretations of all three tests in terms of the ex post minimum-variance frontier of

the K benchmark assets and that of the entire N + K assets. Under the normality assumption,

we present the small sample distribution for all of the three tests and provide a complete analysis

of their power under alternative hypotheses. In addition, we also relate the power of these tests

to the economic significance of departure from the spanning hypothesis. We find that the power

of these three tests does not always align with the economic significance of the difference between

the two minimum-variance frontiers. Without the normality assumption, we conduct our analysis

using simulation and reach a similar conclusion. As an attempt to overcome the power problem in
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the traditional tests, we propose a new testing procedure that is potentially more informative than

the traditional spanning tests.

Recently, DeSantis (1993), Ferson (1995), and Bekaert and Urias (1996) recast the concept of

mean-variance spanning in the stochastic discount factor (SDF) framework and provide various

Generalized Method of Moments (GMM) based tests of spanning. As a further development, we

provide a comparison of the newer SDF approach with the older regression based approach, in terms

of both the size and power. Such a comparison offers insights as to which of these two different

approaches is more reliable in practice. We find the GMM spanning tests under the regression

approach are superior to the corresponding tests under the SDF approach when returns exhibit

conditional heteroskedasticity.

The rest of the paper is organized as follows. The next section discusses the concept of spanning

and the regression based approach for tests of spanning. Section II provides a comprehensive power

analysis of various regression based spanning tests. Section III discusses how to generalize these tests

to the case that the assets returns are not multivariate normally distributed. Section IV introduces

the stochastic discount factor approach for tests of spanning and compares their performance with

the regression based tests. Section V applies various mean-variance spanning tests to examine if

there are benefits of international diversification for a U.S. investor. The final section concludes

our findings and the Appendix contains proofs of all propositions.

I. Regression Based Tests of Spanning

A. Mean-Variance Spanning

The concept of mean-variance spanning is simple. We say a set of K risky assets spans a larger set

of N +K risky assets if the minimum-variance frontier of the K assets is identical to the minimum-

variance frontier of the K assets plus an additional N assets. In the literature, the first set of K

risky assets is often called the benchmark assets and the second set of N risky assets is called the

test assets. When there exists a risk-free asset and unlimited lending and borrowing at the risk-free

rate is allowed, then investors who care about the mean and variance of their portfolios will only

be interested in the tangency portfolio of the risky assets (i.e., the one that maximizes the Sharpe

ratio). In that case, investors are only concerned with whether the tangency portfolio from using
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K benchmark risky assets is the same as the one from using all N + K risky assets. However,

when a risk-free asset does not exist, or there is no unlimited risk-free lending and borrowing at

the same risk-free rate, then investors instead are interested in whether the two minimum-variance

frontiers are identical. The answer to this question allows us to address two interesting questions

in finance. The first question asks whether, conditional on a given set of N +K assets, the investor

can maximize his utility by holding just a smaller set of K assets instead of the complete set. This

question is closely related to the concept of K-fund separation and has implications for efficient

portfolio management. The second question asks whether an investor, conditional on having a

portfolio of K assets, can benefit by investing in a new set of N assets. This latter question

addresses the benefits of diversification and is particularly relevant in the context of international

portfolio management when the K benchmark assets are domestic assets whereas the N test assets

are investments in foreign markets.

HK first discuss the question of spanning and formalize it as a statistical test. Define Rt =

[R′
1t, R′

2t]
′ as the raw returns on N + K risky assets at time t, where R1t is a K-vector of the

returns on the K benchmark assets and R2t is an N -vector of the returns on the N test assets.1

Define the expected returns on the N + K assets as

µ = E[Rt] ≡
[

µ1

µ2

]
, (1)

and the covariance matrix of the N + K risky assets as

V = Var[Rt] ≡
[

V11 V12

V21 V22

]
, (2)

where V is assumed to be nonsingular. By projecting R2t on R1t, we have

R2t = α + βR1t + εt, (3)

with E[εt] = 0N and E[εtR
′
1t] = ON×K , where 0N is an N -vector of zeros and ON×K is an N by K

matrix of zeros. It is easy to show that α and β are given by α = µ2 − βµ1 and β = V21V
−1
11 . Let

δ = 1N −β1K where 1N is an N -vector of ones. HK provide the necessary and sufficient conditions

for spanning in terms of restrictions on α and δ as

H0 : α = 0N , δ = 0N . (4)

1Note that we can also define Rt as total returns or excess returns (in excess of risk-free lending rate).
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To understand why (4) implies mean-variance spanning, we observe that when (4) holds, then

for every test asset, we can find a portfolio of the K benchmark assets that has the same mean

(since α = 0N and β1K = 1N ) but a lower variance than the test asset (since R1t and εt are

uncorrelated and Var[εt] is positive definite). Hence, the N test assets are dominated by the K

benchmark assets.

To facilitate later discussion and to gain a further understanding of what the two conditions

α = 0N and δ = 0N represent, we consider two portfolios on the minimum-variance frontier of the

N + K assets with their weights given by

w1 =
V −1µ

1′N+KV −1µ
, (5)

w2 =
V −11N+K

1′N+KV −11N+K
. (6)

From Merton (1972) and Roll (1977), we know that the first portfolio is the tangency portfolio when

the tangent line starts from the origin, and the second portfolio is the global minimum-variance

portfolio.2

Denote Σ = V22 − V21V
−1
11 V12 and Q = [ON×K , IN ] where IN is an N by N identity matrix.

Using the partitioned matrix inverse formula, the weights of the N test assets in these two portfolios

can be obtained as

Qw1 =
QV −1µ

1′N+KV −1µ
=

[−Σ−1β, Σ−1]µ
1′N+KV −1µ

=
Σ−1(µ2 − βµ1)

1′N+KV −1µ
=

Σ−1α

1′N+KV −1µ
, (7)

and

Qw2 =
QV −11N+K

1′N+KV −11N+K
=

[−Σ−1β, Σ−1]1N+K

1′N+KV −11N+K
=

Σ−1(1N − β1K)
1′N+KV −11N+K

=
Σ−1δ

1′N+KV −11N+K
. (8)

From these two expressions, we can see that testing α = 0N is a test of whether the tangency

portfolio has zero weights in the N test assets, and testing δ = 0N is a test of whether the

global minimum-variance portfolio has zero weights in the test assets. When there are two distinct

minimum-variance portfolios that have zero weights in the N test assets, then by the two-fund

separation theorem, we know that every portfolio on the minimum-variance frontier of the N + K

assets will also have zero weights in the N test assets.3

2In defining w1, we implicitly assume 1′
N+KV −1µ �= 0 (i.e., the expected return of the global minimum-variance

portfolio is not equal to zero). If not, we can pick the weight of another frontier portfolio to be w1.
3Instead of testing H0 : α = 0N and δ = 0N , we can generalize the approach of Jobson and Korkie (1983) and

Britten-Jones (1999) to test directly Qw1 = 0N and Qw2 = 0N .
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B. Multivariate Tests of Mean-Variance Spanning

To test (4), additional assumptions are needed. The popular assumption in the literature is to

assume α and β are constant over time. Under this assumption, α and β can be estimated by

running the following regression

R2t = α + βR1t + εt, t = 1, 2, . . . , T, (9)

where T is the length of time series. HK’s regression based approach is to test (4) in regression (9)

by using the likelihood ratio test.

For notational brevity, we use the matrix form of model (9) in what follows:

R = XB + E, (10)

where R is a T × N matrix of R2t, X is a T × (K + 1) matrix with its typical row as [1, R′
1t],

B = [α, β ]′, and E is a T ×N matrix with ε′t as its typical row. As usual, we assume T ≥ N +K+1

and X ′X is nonsingular. For the purpose of obtaining exact distributions of the test statistics, we

assume that conditional on R1t, the disturbances εt are independent and identically distributed as

multivariate normal with mean zero and variance Σ.4 This assumption will be relaxed later in the

paper.

The likelihood ratio test of (4) compares the likelihood functions under the null and the alter-

native. The unconstrained maximum likelihood estimators of B and Σ are the usual ones

B̂ ≡ [ α̂, β̂ ]′ = (X ′X)−1(X ′R), (11)

Σ̂ =
1
T

(R − XB̂)′(R − XB̂). (12)

Under the normality assumption, we have

vec(B̂′) ∼ N(vec(B′), (X ′X)−1 ⊗ Σ), (13)

T Σ̂ ∼ WN (T − K − 1,Σ), (14)

where WN (T −K−1,Σ) is the N -dimensional central Wishart distribution with T −K −1 degrees

of freedom and covariance matrix Σ. Define Θ = [ α, δ ]′, the null hypothesis (4) can be written as
4Note that we do not require Rt to be multivariate normally distributed; the distribution of R1t can be time-varying

and arbitrary. We only need to assume that conditional on R1t, R2t is normally distributed.
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H0 : Θ = O2×N . Since Θ = AB − C where

A =
[

1 0′K
0 −1′K

]
, (15)

C =
[

0′N
−1′N

]
, (16)

the maximum likelihood estimator of Θ is given by Θ̂ ≡ [ α̂, δ̂ ]′ = AB̂ − C. Define

Ĝ = TA(X ′X)−1A′ =
[

1 + µ̂′
1V̂

−1
11 µ̂1 µ̂′

1V̂
−1
11 1K

µ̂′
1V̂

−1
11 1K 1′K V̂ −1

11 1K

]
(17)

where µ̂1 = 1
T

∑T
t=1 R1t and V̂11 = 1

T

∑T
t=1(R1t − µ̂1)(R1t − µ̂1)′, it can be verified that

vec(Θ̂′) ∼ N(vec(Θ′), (Ĝ/T ) ⊗ Σ). (18)

Let Σ̃ be the constrained maximum likelihood estimator of Σ and U = |Σ̂|/|Σ̃|, the likelihood

ratio test of H0 : Θ = O2×N is given by

LR = −T ln(U) A∼ χ2
2N . (19)

It should be noted that numerically, one does not need to do the constrained estimation to obtain

the likelihood ratio test statistic. From Seber (1984, p.410), we have

Σ̃ − Σ̂ = Θ̂′Ĝ−1Θ̂ (20)

and hence 1/U can be obtained from the unconstrained estimate alone as

1
U

=
|Σ̃|
|Σ̂| = |Σ̂−1Σ̃| = |Σ̂−1(Σ̂ + Θ̂′Ĝ−1Θ̂)| = |IN + Σ̂−1Θ̂′Ĝ−1Θ̂| = |I2 + ĤĜ−1|, (21)

where

Ĥ = Θ̂Σ̂−1Θ̂′ =
[

α̂′Σ̂−1α̂ α̂′Σ̂−1δ̂

α̂′Σ̂−1δ̂ δ̂′Σ̂−1δ̂

]
. (22)

Denoting λ1 and λ2 as the two eigenvalues of ĤĜ−1 where λ1 ≥ λ2 ≥ 0, we have 1/U =

(1 + λ1)(1 + λ2) and the likelihood ratio test can then be written as

LR = T
2∑

i=1

ln(1 + λi). (23)

The two eigenvalues of ĤĜ−1 are of great importance since all invariant tests of (4) are functions

of these two eigenvalues (Theorem 10.2.1 of Muirhead (1982)).
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Besides the likelihood ratio test, there are two other popular asymptotic tests: the Wald test

and the Lagrange multiplier test. From Berndt and Savin (1977), the Wald test is given by

W = T (λ1 + λ2)
A∼ χ2

2N . (24)

and the Lagrange multiplier test is given by

LM = T

2∑
i=1

λi

1 + λi

A∼ χ2
2N . (25)

Note that although LR, W , and LM all have an asymptotic χ2
2N distribution, Berndt and Savin

(1977) and Breusch (1979) show that we must have W ≥ LR ≥ LM in finite samples.5 Therefore,

using the asymptotic distribution to make an acceptance/rejection decision, the three tests could

give conflicting results, with LM favoring acceptance and W favoring rejection.

Note also that unlike the case of testing the mean-variance efficiency of a given portfolio, the

three tests are not increasing transformation of each other except for the case of N = 1,6 so they

are not equivalent tests in general. It turns out that none of the three tests are uniformly most

powerful invariant tests when N ≥ 2, and which test is more powerful depends on the choice of an

alternative hypothesis. Therefore, it is important for us not just to consider the likelihood ratio

test but also the other two.

C. Small Sample Distributions of Spanning Tests

As demonstrated by GRS and others, asymptotic tests could be grossly misleading in finite samples.

In this section, we provide finite sample distribution of the three tests under the null hypothesis.7

Starting with the likelihood ratio test, HK and Jobson and Korkie (1989) show that the exact

distribution of the likelihood ratio test under the null hypothesis is given by8

(
1

U
1
2

− 1
)(

T − K − N

N

)
∼ F2N,2(T−K−N). (26)

5The three test statistics can be modified to have better small sample properties. The modified LR statistic is
obtained by replacing T by T −K− (N +1)/2, the modified W statistic is obtained by replacing T by T −K −N +1,
and the modified LM statistic is obtained by replacing T by T − K + 1.

6When N = 1, we have λ2 = 0 and hence LR = T ln(1 + W
T

) and LM = W/(1 + W
T

).
7The small sample version of the likelihood ratio, the Wald and the Lagrange multiplier tests are known as the

Wilk’s U , the Lawley-Hotelling trace, and the Pillai trace, respectively, in the multivariate statistics literature.
8HK’s expression of the F -test contains a typo. Instead of U

1
2 , it was misprinted as U . This mistake was

unfortunately carried over, to our knowledge, to all later studies such as Bekaert and Urias (1996) and Errunza,
Hogan, and Hung (1999), with the exception of Jobson and Korkie (1989).

7



Although this F -test has been used to test the spanning hypothesis in the literature for N = 1, it

should be emphasized that this F -test is only valid when N ≥ 2. When N = 1, the correct F -test

should be (
1
U

− 1
)(

T − K − 1
2

)
∼ F2,T−K−1. (27)

In this case, the exact distribution of the Wald and Lagrange multiplier tests can be obtained from

the F -test in (27) since all three tests are increasing transformations of each other.

For N ≥ 2, the exact distribution of the Wald test under the null hypothesis is given in Hotelling

(1951) and Anderson (1984)

P [λ1 + λ2 ≤ w]

= I w
2+w

(N − 1, T − K − N) −
B
(

1
2 , T−K

2

)
B
(

N
2 , T−K−N+1

2

)(1 + w)−(T−K−N
2

)I( w
2+w )2

(
N − 1

2
,
T − K − N

2

)
, (28)

where B(·, ·) is the beta function, and Ix(·, ·) is the incomplete beta function.

For the exact distribution of the Lagrange multiplier test for N ≥ 2, there is no easy expression

available in the literature.9 Therefore, we provide our own expression here. For 0 ≤ v ≤ 2, we have

P

[
λ1

1 + λ1
+

λ2

1 + λ2
≤ v

]

= I v
2
(N − 1, T − K − N + 1) −

∫ v2

4

max[0,v−1] u
N−3

2 (1 − v + u)
T−K−N

2 du

2B(N − 1, T − K − N + 1)
. (29)

Proof of this expression is given in the Appendix.

Under the null hypothesis, the exact distributions of all three tests depend only on N and

T − K but are independent of the realizations of R1t. Therefore, under the null hypothesis, the

unconditional distributions of the three test statistics are the same as their distributions when

unconditional on R1t. In Table I, we provide the actual probabilities of rejection of the three tests

under the null hypothesis when the rejection is based on the 95% percentile of their asymptotic

χ2
2N distribution. From Table I, we can see that the actual probabilities of rejection can differ quite

substantially from the asymptotic p-value of 5%, especially when N and K are large relative to T .

For example, when N = 25, even when T is as high as 240, the probabilities of rejection can still
9Existing expressions in Mikhail (1965) and Pillai and Jayachandran (1967) require summing up a large number

of terms and only work for the special case that both N and T − K are odd numbers.
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be two to four times the size of the test for the Wald and the likelihood ratio tests. Therefore,

using asymptotic distributions could lead to a severe over-rejection problem for the Wald and the

likelihood ratio tests. For the Lagrange multiplier test, the actual probabilities of rejection are

actually quite close to the size of the test, except when T is very small. If one wishes to use an

asymptotic spanning test, the Lagrange multiplier test appears to be preferable to the other two

in terms of the size of the test.

Table I about here

D. The Geometry of Spanning Tests

While it is important to have finite sample distributions of the three tests, it is equally important to

develop a measure that allows one to examine the economic significance of departures from the null

hypothesis. Fortunately, all three tests have nice geometrical interpretations. To prepare for our

presentation of the geometry of the three test statistics, we introduce three constants â = µ̂′V̂ −1µ̂,

b̂ = µ̂′V̂ −11N+K , ĉ = 1′N+K V̂ −11N+K , where µ̂ = 1
T

∑T
t=1 Rt and V̂ = 1

T

∑T
t=1(Rt − µ̂)(Rt − µ̂)′. It

is well known that these three constants determine the location of the ex post minimum-variance

frontier of the N + K assets. Similarly, the corresponding three constants for the mean-variance

efficiency set of just the K benchmark assets are â1 = µ̂′
1V̂

−1
11 µ̂1, b̂1 = µ̂′

1V̂
−1
11 1K , ĉ1 = 1′K V̂ −1

11 1K .

Using these constants, we can write

Ĝ =
[

1 + â1 b̂1

b̂1 ĉ1

]
. (30)

The following lemma relates the matrix Ĥ to these two sets of efficiency constants.

Lemma 1 Let ∆â = â − â1, ∆b̂ = b̂ − b̂1, and ∆ĉ = ĉ − ĉ1, we have

Ĥ =
[

∆â ∆b̂

∆b̂ ∆ĉ

]
. (31)

Since Ĥ summarizes the marginal contribution of the N test assets to the efficient set of the K

benchmark assets, Jobson and Korkie (1989) call this matrix the “marginal information matrix.”

With this lemma, we have

U =
1

|I2 + ĤĜ−1| =
|Ĝ|

|Ĝ + Ĥ| =
(1 + â1)ĉ1 − b̂2

1

(1 + â)ĉ − b̂2
=

ĉ1 + d̂1

ĉ + d̂
=
(

ĉ1

ĉ

)1 + d̂1
ĉ1

1 + d̂
ĉ


 , (32)

9



where d̂ = âĉ − b̂2 and d̂1 = â1ĉ1 − b̂2
1. Therefore, the F -test of (26) can be written as

F =
(

T − K − N

N

)(
1

U
1
2

− 1
)

=
(

T − K − N

N

)
( √

ĉ√
ĉ1

)

√

1 + d̂
ĉ√

1 + d̂1
ĉ1


− 1


 . (33)

In Figure 1, we plot the ex post minimum-variance frontier of the K benchmark assets as well

as the frontier for all N + K assets in the (σ̂, µ̂) space. Denote g1 the ex post global minimum-

variance portfolio of the K assets and g the ex post global minimum-variance portfolio of all N +K

assets. It is well known that the standard deviation of g1 and g are 1/
√

ĉ1 and 1/
√

ĉ, respectively.

Therefore, the first ratio
√

ĉ/
√

ĉ1 is simply the ratio of the standard deviation of g1 to that of g,

and this ratio is always greater than or equal to one. To obtain an interpretation of the second ratio√
1 + d̂

ĉ

/√
1 + d̂1

ĉ1
, we note that the absolute value of the slopes of the asymptotes to the efficient set

hyperbolae of the K benchmark assets and of all N +K assets are
√

d̂1/ĉ1 and
√

d̂/ĉ, respectively.

Therefore,
√

1 + d̂1
ĉ1

is the length of the asymptote to the hyperbola of the K benchmark assets

from σ̂ = 0 to σ̂ = 1, and
√

1 + d̂
ĉ is the corresponding length of the asymptote to the hyperbola

of the N + K assets. Since the ex post frontier of the N + K assets dominates the ex post frontier

of the K benchmark assets, the ratio
√

1 + d̂
ĉ

/√
1 + d̂1

ĉ1
must be greater than or equal to one. In

Figure 1, we can see that for N > 1, the F -test of (26) can be geometrically represented as10

F =
(

T − K − N

N

)[(
OD

OC

)(
AH

BF

)
− 1

]
. (35)

Figure 1 about here

Under the null hypothesis, the two minimum-variance frontiers are ex ante identical, so the two

ratios
√

ĉ/
√

ĉ1 and
√

1 + d̂
ĉ

/√
1 + d̂1

ĉ1
should be close to one and the F -statistic should be close to

zero. When either g1 is far enough from g or the slopes of the asymptotes to the two hyperbolae

are very different, we get a large F -statistic and we will reject the null hypothesis of spanning.

For the Wald and the Lagrange multiplier tests, mean-variance spanning is tested by examining

different parts of the two minimum-variance frontiers. To obtain a geometrical interpretation of
10For N = 1, the F -test of (27) can be geometrically represented as

F =

�
T − K − 1

2

���
OD

OC

�2�
AH

BF

�2

− 1

�
. (34)
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these two test statistics, we define θ̂1(r) and θ̂(r) as the slope of the tangent lines to the sample

frontier of the K benchmark assets and of all N + K assets, respectively, when the tangent lines

have a y-intercept of r. Also denote µ̂g1 = b̂1/ĉ1 and µ̂g = b̂/ĉ as the sample mean of the ex post

global minimum-variance portfolio of the K benchmark assets and of all N +K assets, respectively.

Using these definitions, we show in the Appendix that the Wald and Lagrange multiplier tests can

be represented geometrically as11

λ1 + λ2 =
ĉ − ĉ1

ĉ1
+

θ̂2(µ̂g1) − θ̂2
1(µ̂g1)

1 + θ̂2
1(µ̂g1)

=
(

OD

OC

)2

− 1 +
(

BE

BF

)2

− 1 (36)

and

λ1

1 + λ1
+

λ2

1 + λ2
=

ĉ − ĉ1

ĉ
+

θ̂2(µ̂g) − θ̂2
1(µ̂g)

1 + θ̂2(µ̂g)
= 1 −

(
OC

OD

)2

+ 1 −
(

AG

AH

)2

. (37)

From these two expressions and Figure 1, we can see that both the Wald and the Lagrange multiplier

test statistics are each the sum of two quantities. The first quantity measures how close the two ex

post global minimum-variance portfolios g1 and g are, and the second quantity measures how close

together the two tangency portfolios are. However, there is a subtle difference between the two test

statistics. For the Wald test, g1 is the reference point and the test measures how close the sample

frontier of the N + K assets is to g1 in terms of the increase in the variance of going from g to g1,

and in terms of the improvement of the square of the slope of the tangent line from introducing N

additional test assets, with µ̂g1 as the y-intercept of the tangent line. For the Lagrange multiplier

test, g is the reference point and the test measures how close the sample frontier of the K assets is

to g in terms of the reduction in the variance of going from g1 to g, and in terms of the reduction

of the square of the slope of the tangent line when using only K benchmark assets instead of all

the assets, with µ̂g as the y-intercept of the tangent line. Such a difference is due to the Wald test

being derived under the unrestricted model but the Lagrange multiplier test being derived under

the restricted model.

11Note that θ̂2
1(µ̂g1) = d̂1/ĉ1 and θ̂2(µ̂g) = d̂/ĉ and they are just the square of the slope of the asymptote to the

efficient set hyperbolae of the K benchmark assets and of all N + K assets, respectively.
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II. Power Analysis of Spanning Tests

A. Single Test Asset

In the mean-variance spanning literature, there are many applications and studies of HK’s likelihood

ratio test. However, not much has been done on the power of this test. In fact, GRS consider the

lack of power analysis as a drawback of HK test of spanning. Since the likelihood ratio test is not in

general the uniformly most powerful invariant test, it is important for us to understand the power

of all three tests.

We should first emphasize that although in finite samples we have the inequality W ≥ LR ≥
LM , this inequality by no means implies the Wald test is more powerful than the other two. This

is because the inequality holds even when the null hypothesis is true. Hence, the inequality simply

suggests that the tests have different sizes when we use their asymptotic χ2
2N distribution. In

evaluating the power of these three tests, it is important for us to ensure that all of them have the

correct size under the null hypothesis. Therefore, the acceptance/rejection decisions of the three

tests must be based on their exact distributions but not on their asymptotic χ2
2N distribution. It also

deserves emphasis that the distributions of the three tests under the alternative are conditional on

Ĝ, i.e., conditional on the realizations of the ex post frontier of K benchmark assets. Thus, similar

to GRS, we study the power functions of the three tests conditional on a given value of Ĝ, not the

unconditional power function.

When there is only one test asset (i.e., N = 1), all three tests are increasing transformations of

the F -test in (27). For this special case, the power analysis is relatively simple to perform because

it can be shown that this F -test has the following noncentral F -distribution under the alternative

hypothesis (
1
U

− 1
)(

T − K − 1
2

)
∼ F2,T−K−1(Tω), (38)

where Tω is the noncentrality parameter and ω = (Θ′Ĝ−1Θ)/σ2, with σ2 representing the variance

of the residual of the test asset. Geometrically, ω can be represented as12

ω =

[
c − c1

ĉ1
+

θ2(µ̂g1) − θ2
1(µ̂g1)

1 + θ̂2
1(µ̂g1)

]
, (39)

where c1 = 1′KV −1
11 1K and c = 1′N+KV −11N+K are the population counterparts of the efficient set

12The derivation of this expression is similar to that of (36) and therefore not provided.
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constants ĉ1 and ĉ, and θ1(µ̂g1) and θ(µ̂g1) are the slope of the tangent lines to the ex ante frontiers

of the K benchmark assets, and of all N +K assets, respectively, with the y-intercept of the tangent

lines as µ̂g1.

In Figure 2, we present the power of the F -test as a function of ω∗ = Tω/(T − K − 1) for

T −K = 60, 120, and 240, when the size of the test is 5%. It shows that the power function of the

F -test is an increasing function of T − K and ω∗ and this allows us to determine what level of ω∗

that we need to reject the null hypothesis with a certain probability. For example, if we wish the

F -test to have at least a 50% probability of rejecting the spanning null hypothesis, then we need

ω∗ to be greater than 0.089 for T − K = 60, 0.043 for T − K = 120, and 0.022 for T − K = 240.

Figure 2 about here

Note that ω is the sum of two terms. The first term measures how close the ex ante global

minimum-variance portfolios of the two frontiers are in terms of the reciprocal of their variances.

The second term measures how close the ex ante tangency portfolios of the two frontiers are in

terms of the square of the slope of their tangent lines.

In determining the power of the test, the distance between the two global minimum-variance

portfolios is in practice a lot more important than the distance between the two tangency portfolios.

We provide an example to illustrate this. Consider the case of two benchmark assets (i.e., K = 2),

chosen as the equally weighted and value-weighted market portfolio of the NYSE.13 Using monthly

returns from 1926/1–1998/12, we estimate µ̂1 and V̂11 and we have µ̂g1 = b̂1/ĉ1 = 0.0079, σ̂g1 =

1/
√

ĉ1 = 0.049, and θ̂1(µ̂g1) = 0.0875. We plot the ex post minimum-variance frontier of these

two benchmark assets in Figure 3. Suppose we take this frontier as the ex ante frontier of the

two benchmark assets and consider the power of the F -test for two different cases. In the first

case, we consider a test asset that slightly reduces the standard deviation of the global minimum-

variance portfolio from 4.9%/month to 4.5%/month. This case is represented by the dotted frontier

in Figure 3. Although geometrically this asset does not improve the opportunity set of the two

benchmark assets by much, the ω for this test asset is 0.1886 (with 0.1838 coming from the first

term). Based on Figure 2, this allows us to reject the null hypothesis with a 86% probability

for T − K = 60, and the probability of rejection goes up to almost one for T − K = 120 and
13This example was also used by Kandel and Stambaugh (1989).
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240. In the second case, we consider a test asset that does not reduce the variance of the global

minimum-variance portfolio but doubles the slope of the asymptote of the frontier from 0.0875 to

0.175. This case is represented by the outer solid frontier in Figure 3. While economically this test

asset represents a great improvement in the opportunity set, its ω is only 0.0228 and the F -test

does not have much power to reject the null hypothesis. From Figure 2, the probability of rejecting

the null hypothesis is only 16% for T − K = 60, 29% for T − K = 120, and 54% for T − K = 240.

It is easy to explain why the F -test has strong power rejecting the spanning hypothesis for

a test asset that can improve the variance of the global minimum-variance portfolio but little

power for a test asset that can only improve the tangency portfolio. This is because the sampling

error of the former is in practice much less than that of the latter. The first term of ω involves

c−c1 = 1′N+KV −11N+K −1′KV −1
11 1K which is determined by V but not µ. Since estimates of V are

in general a lot more accurate than estimates of µ (see Merton (1980)), even a small difference in

c−c1 can be detected and hence the test has strong power to reject the null hypothesis when c �= c1.

However, the second term of ω involves θ2(µ̂g1)−θ2
1(µ̂g1), which is difficult to estimate accurately as

it is determined by both µ and V . Therefore, even when we observe a large difference in the sample

measure θ̂2(µ̂g1)− θ̂2
1(µ̂g1), it is possible that such a difference is due to sampling errors rather than

due to a genuine difference. As a result, the spanning test has little power against alternatives that

only display differences in the tangency portfolio but not in the global minimum-variance portfolio.

Figure 3 about here

B. Multiple Test Assets

The calculation for the power of the spanning tests is extremely difficult when N > 1. For example,

even though the F -test in (26) has a central F -distribution under the null, it does not have a

noncentral F -distribution under the alternatives. To study the power of the three tests for N > 1,

we need to understand the distribution of the two eigenvalues, λ1 and λ2, of the matrix ĤĜ−1 under

the alternatives. In this subsection, we provide first the exact distribution of λ1 and λ2 under the

alternative hypothesis, then a simulation approach for computing the power in small samples, and

finally examples illustrating the power under various alternatives.

Denote ω1 ≥ ω2 ≥ 0 the two eigenvalues of HĜ−1 where H = ΘΣ−1Θ′ is the population
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counterpart of Ĥ. In the Appendix, we show that the joint density of λ1 and λ2 can be written as

f(λ1, λ2) = e−
T (ω1+ω2)

2 1F1

(
T − K + 1

2
;
N

2
;
D

2
, L(I2 + L)−1

)
×

N − 1
4B(N,T − K − N)


 2∏

i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2


 (λ1 − λ2), (40)

for λ1 ≥ λ2 ≥ 0, where L = Diag(λ1, λ2), 1F1 is the hypergeometric function with two matrix

arguments, and D = Diag(Tω1, Tω2). Under the null hypothesis, the joint density function of λ1

and λ2 simplifies to

f(λ1, λ2) =
N − 1

4B(N,T − K − N)


 2∏

i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2


 (λ1 − λ2). (41)

To understand why λ1 and λ2 are essential in testing the null hypothesis, note that the null

hypothesis H0 : Θ = O2×N can be equivalently written as H0 : ω1 = ω2 = 0. This is because HĜ−1

is a zero matrix if and only if H is a zero matrix, and this is true if and only if Θ = O2×N since

Σ is nonsingular. Therefore, tests of H0 can be constructed using the sample counterparts of ω1

and ω2, i.e., λ1 and λ2. In theory, distributions of all functions of λ1 and λ2 can be obtained from

their joint density function (40). However, the resulting expression is numerically very difficult

to evaluate under alternative hypotheses because it involves the evaluation of a hypergeometric

function with matrix arguments. Instead of using the exact density function of λ1 and λ2, the

following proposition helps us to obtain the small sample distribution of functions of λ1 and λ2 by

simulation.

Proposition 1: λ1 and λ2 have the same distribution as the eigenvalues of AB−1 where A ∼
W2(N, I2,D) and B ∼ W2(T − K − N + 1, I2), independent of A.

With this proposition, we can simulate the exact sampling distribution of any functions of λ1

and λ2 as long as we can generate two random matrices A and B from the noncentral and central

Wishart distributions, respectively. In the proof of Proposition 1 in the Appendix, we give details

on how to do so by drawing a few observations from the Chi-square and the standard normal

distributions.

Before getting into the specific results, we first make some general observations on the power

of the three tests. It can be shown that the power is a monotonically increasing function in Tω1
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and Tω2.14 This implies that, as expected, the power is an increasing functions of T . The more

interesting question is how the power is determined for a fixed T . For such an analysis, we need to

understand what the two eigenvalues of HĜ−1, ω1 and ω2, represent. The proof of Lemma 1 works

also for the population counterparts of Ĥ, so we can write

H =
[

∆a ∆b
∆b ∆c

]
=
[

a − a1 b − b1

b − b1 c − c1

]
, (42)

where a = µ′V −1µ, b = µ′V −11N+K , c = 1′N+KV −11N+K , a1 = µ′
1V

−1
11 µ1, b1 = µ′

1V
−1
11 1K , and

c1 = 1′KV −1
11 1K are the population counterparts of the efficient set constants. Therefore, H is a

measure of how far apart the ex ante minimum-variance frontier of K benchmark assets is from

the ex ante minimum-variance frontier of all N + K assets. Conditional on a given value of Ĝ, the

further apart the two frontiers, the bigger the H, the bigger the ω1 and ω2, and the more powerful

the three tests. However, for a given value of H, the power also depends on Ĝ, which is a measure

of the ex post frontier of K benchmark assets. The better is the ex post frontier of K benchmark

assets, the bigger the Ĝ, and the less powerful the three tests. This is expected because if Ĝ is

large, we can see from (18) that the estimates of α and δ will be imprecise and hence it is difficult

to reject the null hypothesis even though it is not true.

In Figure 4, we present the power of the likelihood ratio test as a function of ω∗
1 = Tω1/(T −

K − 1) and ω∗
2 = Tω2/(T −K − 1) for N = 2 and 10, and for T −K = 60 and 120, when the size of

the test is 5%. Figure 4 shows that for fixed ω∗
1 and ω∗

2, the power of the likelihood ratio test is an

increasing function of T − K and a decreasing function of N . The fact that the power of the test

is a decreasing function of N does not imply we should use fewer test assets to test the spanning

hypothesis. It only suggests that if the additional test assets do not increase ω1 and ω2 (i.e., the

additional test assets do not improve the frontier), then increasing the number of test assets will

reduce the power of the test. However, if the additional test assets can improve the frontier, then

it is possible that the power of the test can be increased by using more test assets.

Figure 4 about here

The plots for the power function of the Wald and the Lagrange multiplier tests are very similar

to those of the likelihood ratio test, so we do not report them separately. For the purpose of
14It is possible for the Lagrange multiplier test that its power function is not monotonically increasing in Tω1 and

Tω2 when the sample size is very small. (See Perlman (1974) for a discussion of this.) However, for the usual sample
sizes and significance levels that we consider, this problem will not arise.
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comparing the power of these three tests, we report in Table II the probability of rejection of the

three tests for N = 10 and T −K = 60 under different values of ω∗
1 and ω∗

2. Although the difference

in the power between the three tests is not large, a pattern emerges. When ω2 ≈ 0, the Wald test

is the most powerful among the three. However, when ω1 ≈ ω2, the Lagrange multiplier test is

more powerful than the other two. There are only a few cases where the likelihood ratio test is

the most powerful one. The pattern that we observe in Table II holds for other values of N and

T − K. Therefore, which test is more powerful depends on the relative magnitude of ω1 and ω2.

The following lemma presents two extreme cases that help to identify alternative hypotheses with

ω2 ≈ 0 or ω1 ≈ ω2.

Lemma 2 Define

µz = arg min
r

[
θ2(r) − θ2

1(r)
]

=
∆b

∆c
. (43)

Under alternative hypotheses, we have (i) ω2 = 0 if and only if c = c1 or θ2(µz) = θ2
1(µz), (ii)

ω1 = ω2 if and only if
c − c1

ĉ1
=

θ2(µz) − θ2
1(µz)

1 + θ̂2
1(µz)

. (44)

The first part of the lemma suggests that when there is a point at which the two ex ante minimum-

variance frontiers are very close, then we have ω2 ≈ 0. The second part of the lemma suggests that

if the percentage reduction of the variance of the global minimum-variance portfolio is roughly the

same as the percentage increase in one plus the square of the slope of the tangent line (when the

y-intercept of the tangent line is µz), then we will have ω1 ≈ ω2.

Table II about here

As discussed earlier in the single test asset case, the effect of a small improvement of the

standard deviation of the global minimum-variance portfolio is more important than the effect of

a large increase in the slope of the tangent lines. Therefore, if we believe that the test assets could

allow us to reduce the standard deviation of the global minimum-variance portfolio by even a small

amount under the alternative hypothesis, then we should expect ω1 to dominate ω2 and the Wald

test should be slightly more powerful than the other two tests.
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C. Economic Significance of Alternative Hypotheses

For reasonable alternative hypotheses, as shown earlier, the distance between the standard devi-

ations of the two global minimum-variance portfolios is the primary determinant of the power of

the three spanning tests whereas the distance between the two tangency portfolios is relatively

unimportant. This is expected because the test of spanning is a joint test of α = 0N and δ = 0N

and it weighs the estimates α̂ and δ̂ according to their statistical accuracy. Since δ does not involve

µ (recall that δ is proportional to the weights of the N test assets in the global minimum-variance

portfolio of all N + K assets), it can be estimated a lot more accurately than α. Therefore, tests

of spanning inevitably place heavy weights on δ̂ and little weights on α̂. Although this practice is

natural from a statistical point of view, it does not take into account the economic significance of

the departure from the spanning hypothesis. A small difference in the global minimum-variance

portfolios, while statistically significant, is not necessarily economically important. On the other

hand, a big difference in the tangency portfolios can be of great economic importance, but this

importance is difficult to detect statistically.

The fact that statistical significance does not always correspond to economic significance for the

three spanning tests suggests that researchers need to be cautious in interpreting the p-values of

these tests. A low p-value does not always imply that there is an economically significant difference

between the two frontiers, and a high p-value does not always imply that the test assets do not add

much to the benchmark assets. To mitigate this problem, we suggest researchers should examine

the two components of the spanning hypothesis (α = 0N and δ = 0N ) individually instead of

jointly. Such a practice could allow us to better assess the statistical evidence against the spanning

hypothesis.

To be more specific, we suggest the following step-down procedure to test the spanning hy-

pothesis.15 This procedure, seems new in finance, is potentially more flexible and provides more

information than the three standard tests discussed earlier. The step-down procedure is a sequen-

tial test. We first test α = 0N , and then test δ = 0N but conditional on the constraint α = 0N . To

15See Section 8.4.5 of Anderson (1984) for a discussion of the step-down procedure. It should be noted that the
step-down procedure there applies to each of the test assets but not to each component of the hypothesis as in our
case.
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test α = 0N , similar to the GRS F -test, denote

F1 =
(

T − K − N

N

)( |Σ̄|
|Σ̂| − 1

)
=
(

T − K − N

N

)(
â − â1

1 + â1

)
, (45)

where Σ̂ is the unconstrained estimate of Σ and Σ̄ is the constrained estimate of Σ by imposing

only the constraint of α = 0N . Under the null hypothesis, F1 has a central F -distribution with N

and T − K − N degrees of freedom. Now to test δ = 0N conditional α = 0N , we use the following

F -test

F2 =
(

T − K − N + 1
N

)( |Σ̃|
|Σ̄| − 1

)
=
(

T − K − N + 1
N

)[(
ĉ + d̂

ĉ1 + d̂1

)(
1 + â1

1 + â

)
− 1

]
, (46)

where Σ̃ is the constrained estimate of Σ by imposing both the constraints of α = 0N and δ = 0N . In

the Appendix, we show that under the null hypothesis, F2 has a central F -distribution with N and

T −K −N + 1 degrees of freedom, and it is independent of F1. Suppose the level of significance of

the first test is α1 and that of the second test is α2. Under the step-down procedure, we will accept

the spanning hypothesis if we accept both tests. Therefore, the significance level of this step-down

test is 1 − (1 − α1)(1 − α2) = α1 + α2 − α1α2.16 There are two benefits of using this step-down

test. The first is that we can get an idea of what is causing the rejection. If the rejection is due

to the first test, we know it is because the two tangency portfolios are statistically very different.

If the rejection is due to the second test, we know the two global minimum-variance portfolios

are statistically very different. The second benefit is flexibility in allocating different significance

levels to the two tests based on their relative economic significance. For example, knowing that it

does not take a big difference in the two global minimum-variance portfolio to reject δ = 0N at

the traditional significance level of 5%, we may like to set α2 to a smaller number so that it takes

a bigger difference in the two global minimum-variance portfolios for us to reject this hypothesis.

Contrary to the three traditional tests that permit the statistical accuracy of α̂ and δ̂ to determine

the relative importance of the two components of the hypothesis, the step-down procedure could

allow us to adjust the significance level on economic significance of the components. Such a choice

could result in a power function that is more sensible than those of the traditional tests.

To illustrate the step-down procedure, we return to our earlier example of two benchmark assets

in Figure 3. For T − K = 60 and a level of significance of 5%, we show that the three traditional
16Alternatively, one can reverse the order by first testing δ = 0N and then testing α = 0N conditional on δ = 0N .

In choosing the ordering of the tests, the natural choice is to test the more important component first.
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tests reject the spanning hypothesis with probability 0.86 for a test asset that merely reduces the

standard deviation of the global minimum-variance portfolio from 4.9% to 4.5%, whereas for a test

asset that doubles the slope of the asymptote from 0.0875 to 0.175, the three tests can only reject

with probability 0.16. In Table III, we provide the power function of the step-down test for these

two cases, using different values of α1 and α2 while keeping the significance level of the test at 5%.17

For different values of α1 and α2, the step-down test has different power in rejecting the spanning

hypothesis. However, in order for the step-down test to be more powerful in rejecting the test asset

that doubles the slope of the asymptote, we need to set α2 to be less than 0.00004. Note that if

we wish to accomplish roughly the same power as the traditional tests, all we need to do is to set

α1 = α2 = 0.02532. While choosing the appropriate α1 and α2 is not a trivial task, it is far better

to be able to have control over them than to leave them determined by statistical considerations

alone.

Table III about here

III. Tests of Mean-Variance Spanning Under Nonnormality

A. Conditional Homoskedasticity

Exact small sample tests are always preferred if they are available. The normality assumption is

made so far to derive the small sample distributions. These results also serve as useful benchmarks

for the general nonnormality case. In this section, we present the spanning tests under the assump-

tion that the disturbance εt in (9) is nonnormal. There are two cases of nonnormality to consider.

The first case is when εt is nonnormal but it is still independently and identically distributed when

conditional on R1t. The second case is when the variance of εt can be time-varying as a function

of R1t, i.e., the disturbance εt exhibits conditional heteroskedasticity.

For the first case that εt is conditionally homoskedastic, the three tests, (23)–(25), are still

asymptotically χ2
2N distributed under the null hypothesis, but their finite sample distributions will

not be the same as the ones presented in Section I. Nevertheless, those results can still provide a very

good approximation for the small sample distribution of the nonnormality case. To illustrate this,

17Under the alternative hypotheses, F1 and F2 are not independent. Details on the computation of the power of
the step-down test are available upon request.
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we simulate the returns on the test assets under the null hypothesis but with εt independently drawn

from a multivariate Student-t distribution with five degrees of freedom.18 In Table IV, we present

the actual probabilities of rejection of the three tests in 100,000 simulations, for different values of

K, N , and T , when the rejection decision is based on the 95th percentile of the exact distribution

under the normality case. As we can see from Table IV, even when εt departs significantly from

normality, the small sample distribution derived for the normality case still works amazingly well.

Our findings are very similar to those of MacKinlay (1985) and Zhou (1993), in which they find

that when εt is conditionally homoskedastic, nonnormality of εt has little impact on the finite

sample distribution of the GRS test even for T as small as 60. Therefore, if one believes conditional

homoskedasticity is a good working assumption, one should not hesitate to use the small sample

version of the three tests derived in Section I even though εt does not have a multivariate normal

distribution.19

Table IV about here

B. Conditional Heteroskedasticity

When εt exhibits conditional heteroskedasticity, the earlier three test statistics, (23)–(25), will no

longer be asymptotically χ2
2N distributed under the null hypothesis.20 In this case, Hansen’s (1982)

GMM is the common viable alternative that relies on the moment conditions of the model. In

this subsection, we present the GMM tests of spanning under the regression approach. This is the

approach used by Ferson, Foerster, and Keim (1993).

Define xt = [1, R′
1t]

′, εt = R2t − B′xt, the moment conditions used by the GMM estimation of

B are

E[gt] = E[xt ⊗ εt] = 0(K+1)N . (47)

18Due to the invariance property, it can be shown that the joint distribution of λ1 and λ2 does not depend on Σ
when εt has a multivariate elliptical distribution. Details are available upon request.

19For some distributions of εt, Dufour and Khalaf (2001) provide a simulation based method to construct finite
sample tests in multivariate regressions. Their methodology can be used to obtain exact tests of spanning under
multivariate elliptical errors.

20It can be shown that under the null hypothesis, the asymptotic distribution of the three test statistics is a linear
combination of 2N independent χ2

1 random variables.
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We assume Rt is stationary with finite fourth moments. The sample moments are given by

ḡT (B) =
1
T

T∑
t=1

xt ⊗ (R2t − B′xt) (48)

and the GMM estimate of B is obtained by minimizing ḡT (B)′S−1
T ḡT (B) where ST is a consistent

estimate of S0 = E[gtg
′
t], assuming serial uncorrelatedness of gt. Since the system is exactly

identified, the unconstrained estimate B̂, and hence Θ̂, does not depend on ST and remains the

same as their OLS estimates in Section I. In the Appendix, we show that the GMM version of the

Wald test can be written as

Wa = Tvec(Θ̂′)′
[
(AT ⊗ IN )ST (A′

T ⊗ IN )
]−1 vec(Θ̂′) A∼ χ2

2N , (49)

where

AT =
[

1 + â1 −µ̂1V̂
−1
11

b̂1 −1′K V̂ −1
11

]
. (50)

Since both the model and the constraints are linear, Newey and West (1987) show that the GMM

version of the likelihood ratio test and the Lagrange multiplier test have exactly the same form as

the Wald test, even though one needs the constrained estimate of B to calculate the likelihood ratio

and Lagrange multiplier tests. Therefore, all three tests are numerically identical if they use the

same ST . In practice, different estimates of ST are often used for the Wald test and the Lagrange

multiplier test. For the case of the Wald test, ST is computed using the unconstrained estimate of

B whereas for the Lagrange multiplier test, ST is usually computed using the constrained estimate

of B. Since the constrained estimate of B depends on the choice of ST , a two-stage or an iterative

approach is often used for performing the Lagrange multiplier test. Despite using different ST , the

two tests are still asymptotically equivalent under the null hypothesis. For the rest of this section,

we focus on the GMM Wald test because its analysis does not require a specification of the initial

weighting matrix and the number of iterations.

C. A Specific Example: Multivariate Elliptical Distribution

To study the potential impact of conditional heteroskedasticity on tests of spanning, we look at the

case that the returns have a multivariate elliptical distribution. Under this class of distributions,

the conditional variance of εt is in general not a constant, but a function of R1t, unless the returns

are multivariate normally distributed. The use of the multivariate elliptical distribution to model
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returns can be motivated both empirically and theoretically. Empirically, Mandelbrot (1963) and

Fama (1965) find that normality is not a good description for stock returns because stock returns

tend to have excess kurtosis compared with the normal distribution. This finding has been sup-

ported by many later studies, including Blatteberg and Gonedes (1974), Richardson and Smith

(1993) and Zhou (1993). Since many members in the elliptical distribution like the multivariate

Student-t distribution can have excess kurtosis, one could better capture the fat-tail feature of

stock returns by assuming that the returns follow a multivariate elliptical distribution. Theoreti-

cally, we can justify the choice of multivariate elliptical distribution because it is the largest class

of distributions for which mean-variance analysis is consistent with expected utility maximization.

For our purpose, the choice of multivariate elliptical distribution is appealing because the GMM

Wald test has a simple analytical expression in this case. This analytical expression allows for simple

analysis of the GMM Wald tests under conditional heteroskedasticity. The following proposition

summarizes the results.21

Proposition 2: Suppose Rt is independently and identically distributed as a non-degenerate mul-

tivariate elliptical distribution with finite fourth moments. Define its kurtosis parameter as

κ =
E[((Rt − µ)′V −1(Rt − µ))2]

(N + K)(N + K + 2)
− 1. (51)

Then the GMM Wald test of spanning is given by

W e
a = T tr(ĤĜ−1

a ) A∼ χ2
2N , (52)

where Ĥ defined in (22) and

Ĝa =

[
1 + (1 + κ̂)â1 (1 + κ̂)b̂1

(1 + κ̂)b̂1 (1 + κ̂)ĉ1

]
, (53)

where κ̂ is a consistent estimate of κ.22

We use the notation W e
a here to indicate that this GMM Wald test is only valid when Rt has a mul-

tivariate elliptical distribution, whereas the GMM Wald test Wa in (49) is valid for all distributions

21We thank Chris Geczy for suggesting the use of kurtosis parameter in this proposition. See Geczy (1999) for a
similar conditional heteroskedasticity adjustment for tests of mean-variance efficiency under elliptical distribution.

22In our empirical work, we use the biased-adjusted estimate of the kurtosis parameter developed by Seo and
Toyama (1996).
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of Rt. Note that when returns exhibit excess kurtosis, Ĝa − Ĝ is a positive definite matrix, so the

regular Wald test W = T tr(ĤĜ−1) is greater than the GMM Wald test W e
a .23 Since Ĝa − Ĝ does

not go to zero asymptotically when κ > 0, using the regular Wald test W will lead to over-rejection

problem when returns follow a multivariate elliptical distribution with excess kurtosis. In the fol-

lowing, we study a popular member of the multivariate elliptical distribution: the multivariate

Student-t distribution.24 To assess the impact of the multivariate Student-t distribution on tests

of spanning, we perform a simulation experiment using the same two benchmark assets given in

Figure 3. For different choices of N , we simulate returns of the benchmark assets and the test

assets jointly from a multivariate Student-t distribution with mean and variance satisfying the null

hypothesis. In Table V, we present the actual size of the regular Wald test W and the two GMM

Wald tests Wa and W e
a , when the significance level of the tests is 5%. The results are presented for

two different values of degrees of freedom for the multivariate Student-t distribution, ν = 5 and 10.

Table V about here

As we can see from Table V, the regular Wald tests reject far too often. The over-rejection

problem is severe when N is large and when the degrees of freedom are small. In addition, the

over-rejection problem does not go away as T increases. For the GMM Wald test under the

elliptical distribution (W e
a ), it works reasonably well except when N is large and T is small, and its

probability of rejection gets closer to the size of the test as T increases. However, for the general

GMM Wald test (Wa), it does not work well at all except when N is very small. In many cases,

it over-rejects even more than the regular Wald test. Such over-rejection is due to the fact that

Wa requires the estimation of a large S0 matrix using ST , which is imprecise when N is relatively

large to T . While Wa is asymptotically equivalent to W e
a under elliptical distribution, the poor

finite sample performance of Wa suggests that it is an ineffective way to correct for conditional

heteroskedasticity when N is large.

Table V also reports the average ratios of W/Wa and W/W e
a . To understand how what values

these average ratios should take, we show in the Appendix that the limit of the expected bias of

23It can be shown that −2/(N +K +2) < κ < ∞ for multivariate elliptical distribution with finite fourth moments.
Therefore, Ĝa cannot be too much smaller than Ĝ when the total number of assets (N + K) is large, but Ĝa can be
much bigger than Ĝ when the return distribution has fat tails.

24For multivariate Student t-distribution with ν degrees of freedom, we have κ = 2/(ν − 4).
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the regular Wald test under the multivariate Student-t distribution is

lim
T→∞

E

[
W

Wa

]
− 1 = lim

T→∞
E

[
W

W e
a

]
− 1 ≈ κ

2
=

1
ν − 4

(54)

when the square of the slope of the asymptote to the sample frontier of the K benchmark assets,

θ̂2
1(µ̂g), is small compared with one (which is usually the case for monthly data). Therefore, when

ν = 5, the limit of the expected bias is about 100%, and when ν = 10, the limit of the expected bias

is about 16.7%. The magnitude of this bias is much greater than the one reported by MacKinlay

and Richardson (1991) for test of mean-variance efficiency of a given portfolio. They find that

when ν = 5, the bias of the regular Wald test is less than 35% even when the squared Sharpe ratio

of the benchmark portfolio is very large, and is negligible when the squared Sharpe ratio is small.

To resolve this difference, we note that the test of mean-variance efficiency of a given portfolio is a

test of α = 0N . The asymptotic variance of α̂ with and without the conditional heteroskedasticity

adjustment are
[
1 +

(
ν−2
ν−4

)
a1

]
Σ and (1 + a1)Σ, respectively.25 When the squared Sharpe ratio of

the benchmark portfolio, a1, is small compared with one, 1 + a1 is very close to 1 +
(

ν−2
ν−4

)
a1, and

hence the impact of the conditional heteroskedasticity adjustment on test of α = 0N is minimal.

For the case of test of spanning, it is a joint test of α = 0N and δ = 0N . The asymptotic

variance of δ̂ with and without the conditional heteroskedasticity adjustment are
(

ν−2
ν−4

)
c1Σ and

c1Σ, respectively, and the ratio of the two is always equal to (ν − 2)/(ν − 4). Hence, when ν is

small, the bias of W could still be very large even when the asymptotic variance of α̂ is almost

unaffected. Therefore, conditional heteroskedasticity has potentially much bigger impact on tests

of spanning than on tests of mean-variance efficiency of a given portfolio, and it is advisable not

to ignore such adjustment for tests of spanning. In finite samples, Table V shows that for ν = 5,

W e
a is only about 60% but not 100% larger than W , even when T = 240. For ν = 10, the average

ratio of W/W e
a is roughly 1.16 and it is very close to the limit of 1.167. As for the average ratios

of W/Wa, they are far away from its limit and often less than one. This again suggests that we

should be cautious in using Wa to adjust for conditional heteroskedasticity when N is large.

Besides its impact on the size of the regular Wald test, multivariate Student-t distribution also

has significant impact on the power of the spanning test. This is because when returns follow

a multivariate Student-t distribution, the asymptotic variances of α̂ and δ̂ are higher than the

25The asymptotic variance of α̂ is given in (A28) of the Appendix. For the special case of K = 1, this expression
is given in MacKinlay and Richardson (1991).

25



normality case. As a result, departures from the null hypothesis become more difficult to detect.

Nevertheless, the power reduction is not uniform across all alternative hypotheses. For test assets

that improve the tangency portfolio (i.e., α �= 0N ), we do not expect a significant change in power

because the asymptotic variances of α̂ under multivariate Student-t and multivariate normality are

almost identical. However, for test assets that improve the variance of the global minimum-variance

portfolio (i.e., δ �= 0N ), we expect there can be a substantial loss in power when returns follow a

multivariate Student-t distribution. This is because the asymptotic variance of δ̂ under multivariate

Student-t returns is much higher than in the case of multivariate normal returns, especially when

the degrees of freedom is small.

In Figure 5, we plot the power function of W e
a under multivariate Student-t returns for these

two types of alternative hypotheses. We use the same two benchmark assets as in Figure 3 and

a single test asset constructed under different alternative hypotheses. Since we do not have the

analytical expression for the power function of W e
a under multivariate Student-t returns, the power

functions are obtained by simulation. In addition, the power functions are size-adjusted so that

W e
a has the correct size under the null hypothesis. The two plots on the left hand side are for the

power function of a test asset that has α �= 0. For both T = 60 and 120, we can see from Figure 5

that the power function for a test asset that has nonzero α does not change much by going from

multivariate normal returns to multivariate Student-t returns. However, for a test asset that has

δ �= 0, the two plots on the right hand side of Figure 5 show that there is a substantial decline in

the power of W e
a when returns follow a multivariate Student-t distribution, as compared with the

case of multivariate normal. While there is a substantial reduction in the probability for W e
a to

reject nonzero δ when the returns follow a multivariate Student-t distribution with a low degrees

of freedom, we still find that small difference in the global minimum-variance portfolio is easier to

detect than large difference in the tangency portfolio. Therefore, just like the regular Wald test in

the normality case, we cannot easily interpret the statistical significance in the GMM Wald test W e
a .

To better understand the source of rejection, we can construct a GMM version of the step-down

test similar to the one for the case of normality. For the sake of brevity, we do not present the

GMM step-down test here but details are available upon request.

Figure 5 about here
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IV. SDF Based Tests of Spanning

A. Equivalent Hypotheses of Spanning

DeSantis (1993), Ferson (1995), and Bekaert and Urias (1996, BU hereafter) exploit the duality

of the Hansen-Jagannathan (1991) bound and the mean-variance frontier and suggest equivalent

hypotheses of spanning that can be tested by using the GMM. Starting with the BU approach,

they project a stochastic discount factor mt with mean c on the returns of N + K assets as

mt = c + (Rt − µ)′β(c) + εt, (55)

where c is a constant. Under no arbitrage, we have

E[(1N+K + Rt)mt] = 1N+K (56)

and hence β(c) is given by

β(c) = V −1[(1 − c)1N+K − cµ]. (57)

In their alternative spanning test, BU choose two distinct values of c, c1 and c2, and test

H1 : Qβ(c1) = 0N and Qβ(c2) = 0N , (58)

where Q = [ON×K , IN ]. In essence, BU test mean-variance spanning by examining whether the N

test assets can help to explain the variance of the stochastic discount factor.

BU prove that H0 and H1 are equivalent. We provide an alternative proof here that has a

simple geometric interpretation.26 To understand what β(c1) and β(c2) represent, we note that

β(c) = (1 − c)V −11N+K − cV −1µ = (1 − c)(1′N+KV −11N+K)w2 − c(1′N+KV −1µ)w1, (59)

where w1 and w2 are the weights of two frontier portfolios defined in (5) and (6).27 Therefore,

β(c1) and β(c2) are just two different linear combinations of the weights of two frontier portfolios

of the N + K assets. With this expression, it is easy to see that H1 is equivalent to the hypothesis

of Qw1 = 0N and Qw2 = 0N , and hence it is also equivalent to H0 : α = 0N and δ = 0N .

26See also Ferson (1995) for yet another alternative proof and discussion.
27Alternatively, one can write β(c) = −cV −1

�
µ − �

1 − 1
c

�
1N+K

�
and we can see that β(c) is proportional to the

weight of a tangency portfolio, where the y-intercept of the tangent line is 1 − 1
c
.
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DeSantis (1993) uses a somewhat different approach. He projects the stochastic discount factor

on the (gross) returns as

mt = c + (1N+K + Rt)′γ(c) + εt. (60)

Note that unlike the BU approach, the expected return µ does not appear as a parameter in

DeSantis’ specification and c is not the mean of the stochastic discount factor mt. Using (56), we

have

γ(c) = U−1[(1 − c)1N+K − cµ], (61)

where

U = E[(1N+K + Rt)(1N+K + Rt)′] = V + (1N+K + µ)(1N+K + µ)′. (62)

Similar to BU’s approach, DeSantis (1993) tests mean-variance spanning by choosing two distinct

values of c, c1 and c2, and test

H2 : Qγ(c1) = 0N and Qγ(c2) = 0N . (63)

In the Appendix, we show that like β(c1) and β(c2), γ(c1) and γ(c2) are also two different linear

combinations of the weights of two frontier portfolios of the N+K assets. Therefore, H2 is equivalent

to the hypothesis of Qw1 = 0N and Qw2 = 0N , and hence it is also equivalent to H0 : α = 0N and

δ = 0N .

B. GMM Tests of Spanning under the SDF Approach

Although the two hypotheses H1 and H2 based on the SDF approach are equivalent to the hypoth-

esis H0 in the regression approach, there are important differences between these two approaches.

To test mean-variance spanning, one needs to make ancillary assumptions. Under the regression

approach, one assumes α and β are constant over time. For β = V21V
−1
11 to be constant over time,

one does not need to assume V is constant over time. For example, if (Rt, zt−1) is jointly ellipti-

cally distributed where zt−1 is the relevant information at time t − 1, then V is time-varying as a

function of zt−1 but yet β is still constant over time. Similarly, for α = µ2−βµ1 to be constant over

time, one does not need µ to be constant over time. Under the SDF approach, one assumes either

β(c) or γ(c) is constant over time for all c. This implies V −11N+K and V −1µ are both constant

over time and hence the weights of the frontier portfolios must also be constant over time. This

is a stronger ancillary assumption than the constant α and β assumption used by the regression

28



approach. While the regression approach still does not allow for arbitrary time-varying µ and V ,

it places less restrictive ancillary assumption than the SDF approach.

With these remarks in mind, we now turn to the GMM estimation and tests by using the SDF

approach assuming µ and V are constant over time. The sample moment conditions used by BU

are

h̄T (β(c1), β(c2)) =

[
1
T

∑T
t=1 Rt(c1 + (Rt − µ̂)′β(c1)) − (1 − c1)1N+K

1
T

∑T
t=1 Rt(c2 + (Rt − µ̂)′β(c2)) − (1 − c2)1N+K

]
. (64)

Note that instead of treating the expected return µ as a parameter, BU use the sample average

return µ̂ in constructing these sample moment conditions. The standard approach should treat µ

as a parameter and uses the following sample moment conditions

h̄∗
T (β(c1), β(c2), µ) =




1
T

∑T
t=1 Rt(c1 + (Rt − µ)′β(c1)) − (1 − c1)1N+K

1
T

∑T
t=1 Rt(c2 + (Rt − µ)′β(c2)) − (1 − c2)1N+K

1
T

∑T
t=1(Rt − µ)


 . (65)

Since the system is exactly identified, it is easy to show that the unconstrained estimates of β(c1)

and β(c2) are given by

β̂(c1) = V̂ −1[(1 − c1)1N+K − c1µ̂)], (66)

β̂(c2) = V̂ −1[(1 − c2)1N+K − c2µ̂)]. (67)

Although the unconstrained estimates of β(c1) and β(c2) are the same regardless of whether we use

h̄T or h̄∗
T , using h̄∗

T allows us to come up with the correct asymptotic variance for b̂ = (β̂(c1)′, β̂(c2)′)′

by incorporating the estimation error of µ̂. However, for the purpose of testing the spanning

hypothesis H1, one can disregard the errors-in-variables adjustment. Let S = Avar(h̄∗
T ) and write

S =
[

S11 S12

S21 S22

]
, (68)

where S11 corresponds to the first two blocks of sample moments of the pricing equation, and S22

corresponds to the sample moments for estimating the expected return.28 The following proposition

summarizes the results.

Proposition 3: The GMM estimator of (β(c1)′, β(c2)′)′ in (65) has asymptotic variance

Avar(b̂) = C−1(S11 − F ′S21 − S12F + F ′S22F )C−1, (69)
28It is important to note that S is a singular matrix with rank 3(N + K)− 1, as shown in Peñaranda and Sentana

(2001). Nevertheless, as we show in the appendix, the fact that S is singular does not affect the asymptotic distribution
of the test statistics in Proposition 3.
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where C = I2 ⊗ V and F = [β(c1)µ′, β(c2)µ′]. The GMM Wald test of H1 : Qβ(c1) = 0N ,

Qβ(c2) = 0N is given by

J1 = T (b̂′Q′
2[Q2Ĉ

−1(Ŝ11 − F̂ ′Ŝ21 − Ŝ12F̂ + F̂ ′Ŝ22F̂ )Ĉ−1Q′
2]
−1Q2b̂)

A∼ χ2
2N , (70)

where Q2 = I2 ⊗ Q, and Ĉ, F̂ , Ŝ are consistent estimators of C, F , and S, respectively. Under

the null hypothesis, J1 is asymptotically equivalent to

J2 = T (b̂′Q′
2(Q2Ĉ

−1Ŝ11Ĉ
−1Q′

2)
−1Q2b̂)

A∼ χ2
2N , (71)

the GMM Wald test obtained by BU from (64) without the errors-in-variables adjustment.

The result that we can ignore the errors-in-variables problem for testing the spanning hypothesis

is similar to a result in Shanken (1992), where he shows that in the two-pass methodology, one

can ignore estimation errors on betas when it comes to testing the beta risk premium is equal to

zero. Although both J1 and J2 are asymptotically valid under the null hypothesis, their size as

well as their power could be quite different in finite samples. We address these issues in the next

subsection using simulation. It is easy to show that J1 and J2 are numerically independent of the

choice of c1 and c2. So without loss of generality, we can choose c1 = 0 and c2 = 1. In this case,

we have β̂(0) = V̂ −11N+K and β̂(1) = −V̂ −1µ̂, and they are proportional to the weights of the two

frontier portfolios that we discussed earlier. Therefore, BU’s approach to testing mean-variance

spanning is to directly test whether the two frontier portfolios contain zero weights in the N test

assets.

Under DeSantis’ parameterization, the sample moment conditions are

m̄T (γ(c1), γ(c2)) =

[
1
T

∑T
t=1(1 + Rt)(c1 + (1 + Rt)′γ(c1)) − 1N+K

1
T

∑T
t=1(1 + Rt)(c2 + (1 + Rt)′γ(c2)) − 1N+K

]
. (72)

The resulting unconstrained estimates of γ(c1) and γ(c2) are given by

γ̂(c1) = Û−1[1N+K − c1(1N+K + µ̂)], (73)

γ̂(c2) = Û−1[1N+K − c2(1N+K + µ̂)], (74)

where Û = 1
T

∑T
t=1(1 + Rt)(1 + Rt)′. Note that in DeSantis’ specification, µ does not appear as a

parameter and therefore we do no need to take care of the errors-in-variables problem as in BU’s
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specification. Under this specification, the GMM Wald test of H2 : Qγ(c1) = 0N , Qγ(c2) = 0N is

given by

J3 = T (ĝ′Q′
2[(I2 ⊗ QÛ−1)Ŝm(I2 ⊗ Û−1Q′)]−1Q2ĝ) A∼ χ2

2N , (75)

where ĝ = (γ̂(c1)′, γ̂(c2)′)′ and Ŝm is a consistent estimate of the asymptotic variance of m̄T .

Similar to J1 and J2, J3 is also numerically independent of the choice of c1 and c2. Without loss of

generality, we can choose c1 = −(µ̂′V̂ −11N+K+1′N+K V̂ −11N+K) and c2 = 1+µ̂′V̂ −1µ̂+µ̂′V̂ −11N+K .

With this choice of c1 and c2, we can verify that γ̂(c1) = V̂ −11N+K and γ̂(c2) = −V̂ −1µ̂, and hence

they are also proportional to the weights of the two frontier portfolios that we discussed earlier.

Therefore, similar to BU’s approach, DeSantis’ approach also tests mean-variance spanning by

directly testing whether the two frontier portfolios contain zero weights in the N test assets.

In both BU and DeSantis specifications, one can also perform a Lagrange multiplier test or an

over-identification test of the spanning hypothesis. However, such tests would require iterations

and the specification of an initial weighting matrix. For a general initial weighting matrix, the

test results are not independent of the choice of c1 and c2.29 Due to the possible ambiguity of the

Lagrange multiplier and over-identification tests, we will not present their results here.

C. Size and Power of SDF Tests of Spanning

In this subsection, we study the size and power of the GMM Wald tests of spanning under the

SDF approach, J1 through J3, and compare them with the GMM Wald test under the regression

approach, Wa. We simulate returns from a multivariate normal distribution with parameters chosen

to satisfy the null hypothesis. To make a fair comparison between the SDF based Wald tests and

the regression based Wald test, we do not use the information of the normal return distribution

in constructing Wa. Instead of using (24) which is valid only under conditional homoskedasticity

assumption, the regression based GMM Wald test we use is the Wa in (49). In Table VI, we

present the actual probabilities of rejection of J1 to J3 and Wa in 100,000 simulations, for different

values of K, N , and T , when the rejection decision is based on the 95th percentile of the χ2
2N

distribution. As we can see from Table VI, all four GMM Wald tests grossly over-reject the null

hypothesis. Although not reported, this over-rejection problem is even more severe when returns

29When the initial weighting matrix is an identity matrix, the Lagrange multiplier tests and over-identification
tests are indeed independent of the choice of c1 and c2, but this is not true for a general initial weighting matrix.

31



are multivariate Student-t distributed. Therefore, when using the GMM Wald tests of spanning,

one must be cautious when using the asymptotic distribution for making the acceptance/rejection

decision.

Table VI about here

Although this over-rejection problem of the Wald tests is severe when using their asymptotic

distribution, one should not be overly concerned if one can simulate their empirical distributions

under the null hypothesis and use them for acceptance/rejection decision. The more important

concern is the relative power of these tests. We perform the same simulation experiment as before

by generating returns from two benchmark assets as in Figure 3 and a single test asset constructed

under different alternative hypotheses. In Figure 6, we generate the returns from a multivariate

normal distribution and plot the power functions of J1 to J3 and compare them with Wa. As we

can see in Figure 6, there are no important differences between the power of the four tests when the

returns are multivariate normally distributed, especially when T = 120. Therefore, in this case, one

could use any of the tests as long as one uses the empirical distribution under the null hypothesis

to make the rejection decision. The similarity of the power functions also suggests that the SDF

based tests of spanning have good power in rejecting alternative hypotheses that generate even a

small reduction in the variance of the global minimum-variance portfolio but little power against

alternative hypotheses that generate large difference in the tangency portfolios.

Figure 6 about here

The same conclusion does not hold when returns are not normally distributed. We repeat the

same simulation exercise but using returns generated from a multivariate Student-t distribution

with five degrees of freedom. The power functions of the four tests are plotted in Figure 7. Here

the GMM Wald test under the regression approach, Wa, has the best power in all cases. As for the

three SDF based GMM Wald tests, J2 has better power for alternative hypotheses that have α �= 0,

whereas J3 has better power for alternative hypotheses that have δ �= 0. While it is not possible to

say that the regression based GMM Wald test is better than the SDF based GMM Wald tests for

all cases, our simulation evidence seems to prefer the spanning test under the regression approach,

especially when returns have a multivariate Student-t distribution.
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Figure 7 about here

V. An Application

In this section, we apply various spanning tests to investigate if there are benefits for international

diversification for a US investor who has an existing investment opportunity set that consists of the

S&P 500 index and the 30-year U.S. Treasury bond. We assume the investor is considering investing

in the equity markets of seven developed countries: Australia, Canada, France, Germany, Italy,

Japan, and U.K. To address the question whether there are benefits for international diversification

for this U.S. investor, we rely on monthly data over the period January 1970 to December 1999.

Monthly return data for the S&P 500 index and the 30-year U.S. Treasury bond are obtained from

the Center for Research in Security Prices (CRSP). Monthly return data for the equity market

of the other seven developed countries are obtained from Morgan Stanley Capital International

(MSCI), and they are all converted into U.S. dollar returns.30

In Figure 8, we plot the ex post opportunity set available to the U.S. investor from combining

the S&P 500 index and the 30-year U.S. Treasury bond. Average return and the standard deviation

of the other seven developed countries are also indicated in the figure. From Figure 8, we can see

that over the 30-year sample period, the Japanese equity market had the highest average return

(16.2%/year), whereas the 30-year U.S. Treasury bond had the lowest average return (8.7%/year).

Although we observe that all seven foreign equity markets lie within the frontier formed by the U.S.

bond and equity, it is possible that the U.S. investor can expand its opportunity set by introducing

some foreign equity into his portfolio.

Figure 8 about here

In Table VII, we report two mean-variance spanning tests on each of the seven foreign equity

indices as well as a joint test on all seven indices. The first test is the corrected HK F -test and the

second test is the step-down test that we suggest in Section II.C. The tests are performed using

monthly data over the 30-year sample period and its two subperiods. Both tests are exact under

normality assumption on the residuals. Results from the entire period show that the traditional

30We thank Campbell Harvey for sharing this data set with us.
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F -test rejects spanning at the 5% level for Australia, France, Germany, Italy and Japan but not

for Canada and the U.K. The joint test also rejects spanning for all seven countries. While we can

reject spanning using the traditional F -test, it is not entirely clear how to interpret the results. For

example, since we can reject spanning for Australia but not for the U.K., does it mean the former

is a better investment than the latter for the U.S. investor? Without knowing where the rejection

comes from, one cannot easily answer this question. The step-down test can help in this case. There

are two components in the step-down test, F1 and F2. F1 is a test of α = 0N whereas F2 is a test

of δ = 0N conditional on α = 0N . From Table VII, the F1 tests can only reject α = 0N for France,

Germany, and Japan but the F2 tests can reject δ = 0N for all cases. By separating the sources

of the rejection, we can conclude that there is strong evidence that the global minimum-variance

portfolio can be improved by the seven foreign equity indices, but there is much weaker evidence

that the tangency portfolio can be improved.

Table VII about here

The subperiod results are not very stable. Although we can jointly reject spanning for the seven

equity indices in each subperiod, the evidence again is limited to rejection of δ = 0N but not to

rejection of α = 0N . Overall, the first subperiod offers more rejections of the spanning hypothesis

than the second subperiod. One could interpret this as evidence that the global equity markets

are becoming more integrated in the second subperiod, hence reducing the benefits of international

diversification.

Given that returns exhibit conditional heteroskedasticity and fat-tails, the spanning tests in

Table VII which based on the normality assumption may not be appropriate. To determine the

robustness of the results, we present in Table VIII some asymptotic spanning tests that do not rely

on the normality assumption. We report two regression based and two SDF based GMM Wald

tests. The regression based Wald tests that we report are W e
a (which is only valid when returns

follow a multivariate elliptical distribution) and Wa. The SDF based GMM Wald tests that we

report are J2 of BU and J3 of DeSantis.31 Consistent with results in Table V, we find that for the

regression based Wald tests, W e
a are mostly smaller than Wa, possibly due to Wa is inflated in small

sample. As for the SDF based GMM Wald tests, we find that J3 are all larger than J2 and when

31We do not report J1 (the BU test with EIV adjustment) because it is numerically very close to J2.
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asymptotic distribution is used, J3 favors rejection of the spanning hypothesis. This is consistent

with the simulation results in Table VI. Keeping in mind that the reported p-values of these tests

are only asymptotic, we compare the test results in Table VIII with those in Table VII. We find that

once we correct for conditional heteroskedasticity in the Wald tests, the evidence against rejection

of spanning in Table VII is further weakened, indicating that there could be over-rejection problems

in Table VII due to nonnormality of returns. Nevertheless, the asymptotic tests in Table VIII still

can jointly reject spanning for the seven foreign equity indices in almost every case, indicating the

rejection in Table VII is robust to conditional heteroskedasticity in the returns.

Table VIII about here

In summary, we find that an U.S. investor with an existing opportunity set of the S&P 500

index and the 30-year U.S. Treasury bond can expand his opportunity set by investing in the

equity indices of the seven developed countries. However, the improvement is only statistically

significant at the global minimum-variance part of the frontier, but not at the part that is close to

the tangency portfolio. To the extent that the U.S. investor is not interested in holding the global

minimum-variance portfolio, there is no compelling evidence that international diversification can

benefit this U.S. investor.

VI. Conclusions

In this paper, we conduct a comprehensive study of various tests of mean-variance spanning. We

provide geometrical interpretations and exact distributions for three popular test statistics based on

the regression model. We also provide a power analysis of these tests that offers economic insights

for understanding the empirical performance of these tests. In realistic situations, spanning tests

have very good power for assets that could improve the variance of the global minimum-variance

portfolio, but they have very little power against assets that could only improve the tangency

portfolio. To mitigate this problem, we suggest a step-down test of spanning that allows us to

extract more information from the data as well as gives us the flexibility to adjust the size of the

test by weighting the two components of the spanning hypothesis based on their relative economic

importance. In addition, we provide a linkage between the traditional regression based spanning

tests with those that are based on the newer SDF approach. The finite sample properties and the
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power studies of these two types of tests are compared and we find evidence that the spanning tests

under the traditional regression approach can be superior to the ones under the SDF approach,

especially when returns follow a multivariate Student-t distribution.

As an application, we apply the spanning tests to study benefits of international diversification

for a U.S. investor. We find that there is strong evidence that equity indices in seven developed

countries are not spanned by the S&P 500 index and the 30-year U.S. Treasury bond. However,

the data cannot offer conclusive evidence that there are benefits for international diversification,

except for those who are interested in investing in the part of the frontier that is close to the global

minimum-variance portfolio.
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Appendix

Proof of (29): Let ξ1 = λ1/(1 + λ1) and ξ2 = λ2/(1 + λ2). From Anderson (1984, p.529) and using

the duplication formula

Γ(k)Γ
(

k − 1
2

)
=

√
πΓ(2k − 1)

22k−2
(A1)

when 2k is an integer, we can write the joint density function of ξ1 and ξ2 under the null hypothesis

as

f(ξ1, ξ2) =
n + 1

2B(2m + 2, 2n + 3)

[
2∏

i=1

ξm
i (1 − ξi)n

]
(ξ1 − ξ2) for 1 ≥ ξ1 ≥ ξ2 ≥ 0, (A2)

where m = (N − 3)/2 and n = (T − K − N − 2)/2.

Using a transformation a1 = ξ1 + ξ2 and a2 = ξ1ξ2, we have the joint density function of a1 and

a2 as

f(a1, a2) =
n + 1

2B(2m + 2, 2n + 3)
am

2 (1 − a1 + a2)n. (A3)

Since a1 = (ξ1 + ξ2) ≥ 2
√

ξ1ξ2 = 2
√

a2 and 1 − a1 + a2 = (1 − ξ1)(1 − ξ2) ≥ 0, the probability

for ξ1 + ξ2 ≤ v is equal to

P [a1 ≤ v]

=
n + 1

2B(2m + 2, 2n + 3)

∫ v2

4

0

∫ min[v,1+a2]

2
√

a2

am
2 (1 − a1 + a2)nda1da2

=
n + 1

2B(2m + 2, 2n + 3)

∫ v2

4

0
am

2

[
(1 − a1 + a2)n+1

n + 1

]∣∣∣∣
2
√

a2

min[v,1+a2]

da2

=
1

2B(2m + 2, 2n + 3)


∫ v2

4

0
am

2 (1 −√
a2)2n+2da2 −

∫ v2

4

max[0,v−1]
am

2 (1 − v + a2)n+1da2




= I v
2
(2m + 2, 2n + 3) − 1

2B(2m + 2, 2n + 3)

∫ v2

4

max[0,v−1]
am

2 (1 − v + a2)n+1da2. (A4)

This completes the proof. Q.E.D.

Proof of Lemma 1: Denote β̂ = V̂21V̂
−1
11 and Σ̂ = V̂22 − V̂21V̂

−1
11 V̂12. Using the partitioned matrix

inverse formula, it is easy to verify that

V̂ −1 =
[

V̂ −1
11 + β̂′Σ̂−1β̂ −β̂′Σ̂−1

−Σ̂−1β̂ Σ̂−1

]
=
[

V̂ −1
11 OK×N

ON×K ON×N

]
+
[ −β̂′

IN

]
Σ̂−1[−β̂ IN ]. (A5)
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Therefore,

[
â b̂

b̂ ĉ

]

=
[

µ̂′

1′N+K

]
V̂ −1[µ̂ 1N+K ]

=
[

µ̂′

1′N+K

] [
V̂ −1

11 OK×N

ON×K ON×N

]
[µ̂ 1N+K ] +

[
µ̂′

1′N+K

] [ −β̂′

IN

]
Σ̂−1[−β̂ IN ][µ̂ 1N+K ]

=
[

µ̂′
1

1′K

]
V̂ −1

11 [µ̂1 1K ] +
[

(µ̂2 − β̂µ̂1)′

(1N − β̂1K)′

]
Σ̂−1[µ̂2 − β̂µ̂1 1N − β̂1K ]

=
[

â1 b̂1

b̂1 ĉ1

]
+ Ĥ. (A6)

This completes the proof. Q.E.D.

Proof of (36) and (37): Since λ1 and λ2 are the two eigenvalues of ĤĜ−1, they are the solutions

to the following equation

|ĤĜ−1 − λI2| = 0, (A7)

or equivalently the solutions to

|Ĥ − λĜ| =
∣∣∣∣ ∆â − λ(1 + â1) ∆b̂ − λb̂1

∆b̂ − λb̂1 ∆ĉ − λĉ1

∣∣∣∣ = 0. (A8)

Simplifying, we have

(ĉ1 + d̂1)λ2 −
[
∆âĉ1 − 2∆b̂b̂1 + ∆ĉ(1 + â1)

]
λ +

[
∆â∆ĉ − (∆b̂)2

]
= 0. (A9)

It is easy to see that

λ1 + λ2 =
∆âĉ1 − 2∆b̂b̂1 + ∆ĉ(1 + â1)

ĉ1 + d̂1

=
∆â − 2∆b̂µ̂g1 + ∆ĉµ̂2

g1

1 + d̂1
ĉ1

+
∆ĉ

(
1+â1

ĉ1
− µ̂2

g1

)
1 + d̂1

ĉ1

=
θ̂2(µ̂g1) − θ̂2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

+
∆ĉ

ĉ1
, (A10)

where the last equality follows from the fact that

θ̂2(r) − θ̂2
1(r) = (â − 2b̂r + ĉr2) − (â1 − 2b̂1r + ĉ1r

2) = ∆â − 2∆b̂r + ∆ĉr2. (A11)

38



For the Lagrange multiplier test, we define ξi = λi/(1 + λi) and we have ξ1 and ξ2 as the two

eigenvalues of Ĥ(Ĥ + Ĝ)−1, which are the solutions to the following equation

|Ĥ − ξ(Ĥ + Ĝ)| =
∣∣∣∣ ∆â − ξ(1 + â) ∆b̂ − ξb̂

∆b̂ − ξb̂ ∆ĉ − ξĉ

∣∣∣∣ = 0. (A12)

Comparing (A8) with (A12), the only difference is â1, b̂1, ĉ1 are replaced by â, b̂, and ĉ. Therefore,

by making the corresponding substitutions, ξ1 + ξ2 takes the same form as (A10). This completes

the proof. Q.E.D.

Proof of (40): Following Muirhead (1982), it is easy to show that Y ∗
1 =

√
TĜ− 1

2 Θ̂ and Σ̂ are

independent of each other. Furthermore, the eigenvalues of Y ∗
1 (T Σ̂)−1Y ∗

1
′ = Ĝ− 1

2 Θ̂Σ̂−1Θ̂′Ĝ− 1
2 are

the same as the eigenvalues of Θ̂Σ̂−1Θ̂′Ĝ−1 = ĤĜ−1, so from Theorem 10.4.5 of Muirhead (1982),

we have the joint density function of the two eigenvalues of ĤĜ−1 as

f(λ1, λ2) = e−tr(Ω)/2
1F1

(
T − K + 1

2
;
N

2
;
Ω
2

, L(I2 + L)−1

)
×

N − 1
4B(N,T − K − N)


 2∏

i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2


 (λ1 − λ2), (A13)

for λ1 ≥ λ2 ≥ 0, where L = Diag(λ1, λ2), 1F1 is the hypergeometric function with two matrix

arguments, and

Ω = TĜ− 1
2 ΘΣ−1Θ′Ĝ− 1

2 . (A14)

It is well known that the hypergeometric function only depends on the eigenvalues of Ω, which is

the same as the eigenvalues of THĜ−1. Therefore, the joint density function of λ1 and λ2 depends

only on the eigenvalues of THĜ−1 and we can replace Ω with D. This completes the proof. Q.E.D.

Proof of Proposition 1: Using Theorem 10.4.2 of Muirhead (1982), we can find out the density

function of the two eigenvalues of AB−1 is exactly the same as (40). To generate B, we use the

Bartlett’s decomposition of central Wishart distribution (see Muirhead (1982), Theorem 3.2.14).

Define L a lower triangular 2 by 2 matrix with L11 ∼
√

χ2
T−K−N+1 L22 ∼

√
χ2

T−K−N , and L12 ∼
N( 0, 1) . Then B = LL′ ∼ W2(T − K − N + 1, I2). To generate A, we generate a central Wishart

S ∼ W2(N −2, I2) using the same procedure and a 2 by 2 matrix Z where vec(Z) ∼ N(vec(D
1
2 ), I4),

then we have Z ′Z ∼ W2(2, I2,D) and A = S + Z ′Z ∼ W2(N, I2,D). This completes the proof.

Q.E.D.
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Proof of Lemma 2: By replacing ∆â, ∆b̂, ∆ĉ by ∆a, ∆b, and ∆c, we have from (A10)

ω1 + ω2 =
∆c

ĉ1
+

θ2(µ̂g1) − θ2
1(µ̂g1)

1 + θ̂2
1(µ̂g1)

. (A15)

Similarly, with the same replacement, we have from (A9)

ω1ω2 =
∆a∆c − (∆b)2

ĉ1 + d̂1

=
(

∆c

ĉ1

)(
θ2(µz) − θ2

1(µz)
1 + θ̂2

1(µ̂g1)

)
, (A16)

where the last equality follows from the fact that

θ2(µz) − θ2
1(µz) = ∆a − 2∆b

(
∆b

∆c

)
+ ∆c

(
∆b

∆c

)2

= ∆a − (∆b)2

∆c
. (A17)

(i) Since under the alternative hypothesis, we have ω1 > 0. Therefore, from (A16), we can see that

ω2 = 0 if and only if ∆c = 0 or θ2(µz) − θ2
1(µz). (ii) Using the inequality (a + b)2 ≥ 4ab for a and

b nonnegative and the definition of µz, we have

(ω1 + ω2)2 =

[
∆c

ĉ1
+

θ2(µ̂g1) − θ2
1(µ̂g1)

1 + θ̂2
1(µ̂g1)

]2

≥ 4
(

∆c

ĉ1

)(
θ2(µ̂g1) − θ2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

)

≥ 4
(

∆c

ĉ1

)(
θ2(µz) − θ2

1(µz)

1 + θ̂2
1(µ̂g1)

)

= 4ω1ω2. (A18)

For ω1 = ω2 > 0, we need the two inequalities to be equalities. This is true if and only if

∆c

ĉ1
=

θ2(µ̂g1) − θ2
1(µ̂g1)

1 + θ̂2
1(µ̂g1)

(A19)

and µ̂g1 = µz. Combining these two conditions, we prove the lemma. Q.E.D.

Proof of the distribution of (45) and (46): The proof that under the null hypothesis, F1 has a

central F -distribution with N and T − K − N degrees of freedom follows directly from Theorem

8.4.5 of Anderson (1984). For F2, we have from Seber (1984, pp.412–413),

|Σ̄|
|Σ̃| ∼ UN,1,T−K (A20)

under the null hypothesis, and hence from 2.42 of Seber (1984), we have

F2 =
(

T − K − N + 1
N

)( |Σ̃|
|Σ̄| − 1

)
∼ FN,T−K−N+1. (A21)
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The independence of F1 and F2 under the null hypothesis follows from Corollary 10.5.4 of Muirhead

(1982). This completes the proof. Q.E.D.

Proof of (49): From Hansen (1982), the asymptotic variance of vec(B̂′) is given by (D′
0S

−1
0 D0)−1,

where

D0 = E

[
∂ḡT (B)

∂vec(B′)′

]
= E[xtx

′
t] ⊗ IN . (A22)

Since Θ̂ = AB̂ − C, the asymptotic variance of vec(Θ̂′) is given by

(A ⊗ IN )(D′
0S

−1
0 D0)−1(A′ ⊗ IN ) = (A ⊗ IN )D−1

0 S0D
−1
0 (A′ ⊗ IN )

= (A(E[xtx
′
t])

−1 ⊗ IN )S0((E[xtx
′
t])

−1A′ ⊗ IN ). (A23)

Using the partitioned matrix inverse formula, we have

A(E[xtx
′
t])

−1 =
[

1 0′K
0 −1′K

] [
1 µ′

1

µ1 V11 + µ1µ
′
1

]−1

=
[

1 0′K
0 −1′K

] [
1 + µ′

1V
−1
11 µ1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]

=
[

1 + µ′
1V

−1
11 µ1 −µ1V

−1
11

1′KV −1
11 µ1 −1′KV −1

11

]
. (A24)

Replacing S0 and A(E[xtx
′
t])−1 by their consistent estimates ST and AT , we obtain (49). This

completes the proof. Q.E.D.

Proof of Proposition 2: When Rt follows a multivariate elliptical distribution, we have

E[R1tR
′
1t ⊗ εtε

′
t] = µ1µ

′
1 ⊗ Σ + (1 + κ)V11 ⊗ Σ = (V11 + µ1µ

′
1) ⊗ Σ + κV11 ⊗ Σ, (A25)

using Corollary 3.2.1 and 3.2.2 in Mathai, Provost, and Hayakawa (1995). It follows that

S0 = E[xtx
′
t] ⊗ Σ +

[
0 0′K

0K κV11

]
⊗ Σ. (A26)

Using this expression and (A22), the asymptotic variance of vec(B̂′) is given by

(D′
0)

−1S0D
−1
0 =

[
1 + a1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]
⊗ Σ + κ

[
a1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]
⊗ Σ. (A27)

Note that the first term is the asymptotic variance of vec(B̂′) under the conditional homoskedasticity

assumption, and the second term is the adjustment matrix due to the conditional heteroskedasticity.

The asymptotic variance of vec(Θ̂′) is then given by

(A ⊗ IN )(D−1
0 )′S0D

−1
0 (A′ ⊗ IN ) =

[
1 + (1 + κ)a1 (1 + κ)b1

(1 + κ)b1 (1 + κ)c1

]
⊗ Σ. (A28)

41



By replacing a1, b1, c1, κ, Σ by their consistent estimates â1, b̂1, ĉ1, κ̂ and Σ̂, the consistent estimate

of the asymptotic variance of vec(Θ̂′) is Ĝa ⊗ Σ̂. Therefore, the GMM Wald test is

Wa = Tvec(Θ̂′)′(Ĝ−1
a ⊗ Σ̂−1)vec(Θ̂′) = Tvec(Θ̂′)′vec(Σ̂−1Θ̂′Ĝ−1

a ) = T tr(ĤĜ−1
a ), (A29)

where the last equality follows from the identity tr(AB) = vec(A′)′vec(B). This completes the

proof. Q.E.D.

Proof of (54): Since Wa is asymptotically equivalent to W e
a , the limit of E[W/Wa] is the same as

the limit of E[W/W e
a ]. For W , we have from (A10),

W = tr(ĤĜ−1) =
θ̂2(µ̂g) − θ̂2

1(µ̂g)

1 + θ̂2
1(µ̂g)

+
∆ĉ

ĉ1
. (A30)

Using a similar proof, we have

W e
a = tr(ĤĜ−1

a ) =
θ̂2(µ̂g) − θ̂2

1(µ̂g)

1 + (1 + κ̂)θ̂2
1(µ̂g)

+
∆ĉ

ĉ1(1 + κ̂)
≡ X1 + X2. (A31)

Under the null hypothesis, the two terms X1 and X2 are asymptotically independent of each other

and distributed as χ2
N . When θ̂2

1(µ̂g) is small compared with one, we have

tr(ĤĜ−1) ≈ X1 + (1 + κ)X2, (A32)

and hence

lim
T→∞

W

W e
a

− 1 ≈ X1 + (1 + κ)X2

X1 + X2
− 1 = κ

(
X2

X1 + X2

)
. (A33)

Asymptotically, X2/(X1 + X2) has a beta distribution and its expected value is 1/2. Therefore, we

have

lim
T→∞

E

[
W

W e
a

]
− 1 ≈ κ

2
. (A34)

This completes the proof. Q.E.D.

Proof that γ(c) in (61) is a linear combination of w1 and w2: Note that we can write U−1 as

U−1 = V −1 − V −1(1N+K + µ)(1N+K + µ)′V −1

1 + (1N+K + µ)′V −1(1N+K + µ)
= V −1 − (d1w1 + d2w2)(1N+K + µ)′V −1, (A35)

where w1 and w2 are defined in (5) and (6) and

d1 =
1′N+KV −1µ

1 + (1N+K + µ)′V −1(1N+K + µ)
, (A36)

d2 =
1′N+KV −11N+K

1 + (1N+K + µ)′V −1(1N+K + µ)
. (A37)
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Using this identity, we have

γ(c) = U−1[(1 − c)1N+K − cµ]

= V −1[(1 − c)1N+K − cµ] − (d1w1 + d2w2)(1N+K + µ)′V −1[(1 − c)1N+K − cµ]

= (1 − c)(1′N+KV −11N+K)w2 − c(1′N+KV −1µ)w1

− (1N+K + µ)′V −1[(1 − c)1N+K − cµ](d1w1 + d2w2), (A38)

which is a linear combination of w1 and w2. This completes the proof. Q.E.D.

Proof of Proposition 3: Define

D0 = E

[
∂h̄∗

T

∂β(c1)′
,

∂h̄∗
T

∂β(c2)′
,

∂h̄∗
T

∂µ′

]
=
[

C −F ′

O(N+K)×2(N+K) −IN+K

]
, (A39)

we have the asymptotic variance of (b̂, µ̂) as (D′
0WD0)−1(D′

0WSWD0)(D′
0WD0)−1 = D−1

0 S(D′
0)

−1

for any positive definite weighting matrix W . Using

D−1
0 =

[
C−1 −C−1F ′

O(N+K)×2(N+K) −IN+K

]
, (A40)

we can express D−1
0 S(D′

0)
−1 as[

C−1(S11 − F ′S21 − S12F + F ′S22F )C−1 −C−1(S12 − F ′S22)
−(S21 − S22F )C−1 S22

]
, (A41)

and the asymptotic variance of b̂ is given by its first submatrix.32 Since the asymptotic variance of

Q2b̂ is

Q2C
−1(S11 − F ′S21 − S12F + F ′S22F )C−1Q′

2, (A42)

the GMM Wald test of H1 follows by replacing the asymptotic variance of Q2b̂ with its consistent

estimate. Under the null hypothesis, we have from (7) that QV −1µ = 0N and hence

Q2C
−1F ′ =

[
QV −1µβ(c1)′

QV −1µβ(c2)′

]
= O2N×(N+K). (A43)

Therefore, the asymptotic variance of Q2b̂ can be simplified to Q2C
−1S11C

−1Q′
2 under the null

hypothesis and J2 is asymptotically equivalent to J1. This completes the proof. Q.E.D.

32Note that although S is a singular matrix, Avar[b̂] and Avar[Q2b̂] are nonsingular and hence the test statistic J1

is nevertheless valid.
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Peñaranda, Francisco, and Enrique Sentana, 2001, Spanning tests in return and stochastic discount

mean-varaince frontiers: a unifying approach, working paper, CEMFI.

Perlman, M. D., 1974, On the monotonicity of the power function of tests based on traces of

multivariate beta matrices, Journal of Multivariate Analysis 4, 22–30.

Pillai, K. C. Sreedharan, and Kanta Jayachandran, 1967, Power comparison of tests of two mul-

tivariate hypotheses based on four criteria, Biometrika 54, 195–210.

46



Richardson, Matthew, and Tom Smith, 1993, A test for multivariate normality in stock returns,

Journal of Business 66, 295–321.

Roll, Richard, 1977, A critique of the asset pricing theory’s test; Part I: on past and potential

testability of theory, Journal of Financial Economics 4, 129–176.

Seber, G. A. F., 1984, Multivariate Observations (Wiley, New York).

Seo, Takashi, and Takuya Toyama, 1996, On the estimation of kurtosis parameter in elliptical

distributions, Journal of the Japan Statistical Society 26, 59–68.

Shanken, Jay, 1992, On the estimation of beta-pricing models, Review of Financial Studies 5,

1–33.

Zhou, Guofu, 1993, Asset pricing test under alternative distributions, Journal of Finance 48,

1925–1942.

47



1√
ĉ1
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Figure 1
The Geometry of Mean-Variance Spanning Tests
The figure plots the ex post minimum-variance frontier hyperbola of K benchmark assets and
that of all N + K assets on the (σ̂, µ̂) space. The constants that determine the hyperbola of K
benchmark assets are â1 = µ̂′

1V̂11µ̂1, b̂1 = µ̂′
1V̂111K , ĉ1 = 1′K V̂111K , and d̂1 = â1ĉ1 − b̂2

1, where µ̂1

and V̂11 are maximum likelihood estimates of the expected return and covariance matrix of the K
benchmark assets. The constants that determine the hyperbola of all N + K assets are â = µ̂′V̂ µ̂,
b̂ = µ̂′V̂ 1N+K , ĉ = 1′N+K V̂ 1N+K , and d̂ = âĉ−b̂2, where µ̂ and V̂ are maximum likelihood estimates
of the expected return and covariance matrix of all N +K assets. Portfolios g1 and g are the ex post
global minimum-variance portfolios of the two frontiers. The dotted line going through BF is one

of the asymptotes to the hyperbola of K benchmark assets. It has slope −
√

d̂1
ĉ1

and the distance

BF is
√

1 + d̂1
ĉ1

. The dotted line going through AH is one of the asymptotes to the hyperbola of all

N + K assets. It has slope
√

d̂
ĉ and the distance AH is

√
1 + d̂

ĉ . The distance AG is
√

1 + θ̂2
1(µ̂g)

where θ̂1(µ̂g) is the slope of the tangent line to the frontier of the K benchmark assets when the

y-intercept of the tangent line is µ̂g. The distance BE is
√

1 + θ̂2(µ̂g1) where θ̂(µ̂g1) is the slope of
the tangent line to the frontier of all N + K assets when the y-intercept of the tangent line is µ̂g1.
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Figure 2
Power Function of Mean-Variance Spanning Test with Single Test Asset
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning as a
function of ω∗ for three different values of T − K (the number of time series observations minus
the number of benchmark assets), when there is only one test asset and the size of the test is 5%.
The spanning test is an F -test, which has a central F -distribution with 2 and T − K − 1 degrees
of freedom under the null hypothesis, and has a noncentral F -distribution with 2 and T − K − 1
degrees of freedom with noncentrality parameter (T − K − 1)ω∗ under the alternatives.
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Figure 3
Minimum-Variance Frontier of Two Benchmark Assets
The figure plots the minimum-variance frontier hyperbola of two benchmark assets in the (σ, µ)
space. The two benchmark assets are the value-weighted (VW) and equally weighted (EW) port-
folios of the NYSE. g1 is the global minimum-variance portfolio and the two dashed lines are the
asymptotes to the efficient set parabola. The frontier of the two benchmark assets is estimated
using monthly data from the period 1926/1–1998/12. The figure also presents two additional fron-
tiers for the case that a test asset is added to the two benchmark assets. The dotted frontier is for
a test asset that improves the standard deviation of the global minimum-variance portfolio from
4.9%/month to 4.5%/month. The outer solid frontier is for a test asset that does not improve the
global minimum-variance portfolio but doubles the slope of the asymptote from 0.0875 to 0.175.
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Figure 4
Power Function of Likelihood Ratio Test
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning as
a function of ω∗

1 and ω∗
2 using the likelihood ratio test when the size of the test is 5%, where

(T − K − 1)ω∗
1 and (T − K − 1)ω∗

2 are the eigenvalues of the noncentrality matrix THĜ−1. The
four plots are for two different values of N (number of test assets) and two different values of T −K
(number of time series observations minus number of benchmark assets). The likelihood ratio test
is an F -test, which has a central F -distribution with 2N and 2(T − K − N) degrees of freedom
under the null hypothesis.
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Figure 5
Power Function of GMM Wald Test Under Multivariate Student-t Returns
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning for two
different types of alternative hypotheses using the GMM Wald test. The plots on the left hand
side are for alternative hypotheses with nonzero α, where (α/σ)2 is the improvement of the square
of the slope of the tangent line with a y-intercept equals to zero. The plots on the right hand side
are for alternative hypotheses with nonzero δ, where (δ/σ)2 is the improvement of the reciprocal of
the variance of the global minimum variance portfolio. T is the length of time series observations
used in the GMM Wald test. The significance level of the test is 5% and the rejection decision is
based on the empirical distribution obtained from 100,000 simulations under the null hypothesis.
For each one of the alternative hypotheses, returns on two benchmark assets and one test asset are
generated using a multivariate Student-t distribution with five or ten degrees of freedom and the
probability of rejection in 100,000 simulations is plotted. The figure also plots the power function
for the case of multivariate normal returns for comparison.
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Figure 6
Power Function of GMM Wald Tests Under Multivariate Normal Returns
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning for two
different types of alternative hypotheses using four different GMM Wald tests (J1 to J3 are SDF
based, Wa is regression based). The plots on the left hand side are for alternative hypotheses
with nonzero α, where (α/σ)2 is the improvement of the square of the slope of the tangent line
with a y-intercept equals to zero. The plots on the right hand side are for alternative hypotheses
with nonzero δ, where (δ/σ)2 is the improvement of the reciprocal of the variance of the global
minimum variance portfolio. T is the length of time series observations used in the GMM Wald
test. The significance level of the test is 5% and the rejection decision is based on the empirical
distribution obtained from 100,000 simulations under the null hypothesis. For each one of the
alternative hypotheses, returns on two benchmark assets and one test asset are generated using a
multivariate normal distribution and the probability of rejection in 100,000 simulations is plotted.
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Figure 7
Power Function of GMM Wald Tests Under Multivariate Student-t Returns
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning for two
different types of alternative hypotheses using four different GMM Wald tests (J1 to J3 are SDF
based, Wa is regression based). The plots on the left hand side are for alternative hypotheses
with nonzero α, where (α/σ)2 is the improvement of the square of the slope of the tangent line
with a y-intercept equals to zero. The plots on the right hand side are for alternative hypotheses
with nonzero δ, where (δ/σ)2 is the improvement of the reciprocal of the variance of the global
minimum variance portfolio. T is the length of time series observations used in the GMM Wald
test. The significance level of the test is 5% and the rejection decision is based on the empirical
distribution obtained from 100,000 simulations under the null hypothesis. For each one of the
alternative hypotheses, returns on two benchmark assets and one test asset are generated using a
multivariate Student-t distribution with five degrees of freedom and the probability of rejection in
100,000 simulations is plotted.
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Figure 8
Average Return and Standard Deviation of U.S. and Foreign Investments
The figure plots the average return and sample standard deviation (in annualized percentage)
of S&P 500 index, 30-year U.S. Treasury bond, and seven foreign equity indices, computed using
monthly data over the period January 1970 to December 1999. The figure also plots the opportunity
set from combining the S&P 500 index and the 30-year U.S. Treasury bond.
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Table I
Sizes of Three Asymptotic Tests of Spanning Under Normality

The table presents the actual probabilities of rejection of three asymptotic tests of spanning (Wald (W ), like-
lihood ratio (LR), and Lagrange multiplier (LM)), under the null hypothesis for different values of number of
benchmark assets (K), test assets (N), and time series observations (T ). The asymptotic p-values of all three
tests are set at 5% based on the asymptotic distribution of χ2

2N and the actual p-values reported in the table
are based on their finite sample distributions under normality assumption.

Actual Probabilities of Rejection

K N T W LR LM

2 2 60 0.078 0.063 0.048
120 0.063 0.056 0.049
240 0.056 0.053 0.050

5 60 0.123 0.080 0.044
120 0.081 0.063 0.047
240 0.064 0.056 0.049

10 60 0.249 0.125 0.037
120 0.126 0.080 0.044
240 0.082 0.063 0.047

25 60 0.879 0.500 0.015
120 0.422 0.185 0.033
240 0.183 0.099 0.042

5 2 60 0.094 0.076 0.059
120 0.069 0.062 0.054
240 0.059 0.056 0.052

5 60 0.155 0.104 0.060
120 0.092 0.073 0.055
240 0.069 0.060 0.052

10 60 0.315 0.172 0.058
120 0.146 0.095 0.054
240 0.089 0.069 0.052

25 60 0.932 0.638 0.038
120 0.479 0.229 0.047
240 0.203 0.113 0.049

10 2 60 0.126 0.105 0.084
120 0.081 0.073 0.064
240 0.064 0.060 0.057

5 60 0.222 0.159 0.100
120 0.114 0.091 0.070
240 0.077 0.068 0.059

10 60 0.446 0.279 0.118
120 0.186 0.126 0.075
240 0.103 0.081 0.061

25 60 0.981 0.838 0.146
120 0.579 0.315 0.082
240 0.238 0.138 0.063
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Table II
Comparison of Power of Three Tests of Spanning Under Normality

The table presents the probabilities of rejection of Wald, likelihood ratio, and Lagrange multiplier tests of
spanning in 100,000 simulations under the alternative hypotheses when the number of test assets (N) is equal
to 10 and the number of time series observations less the number of benchmark assets (T − K) is equal to 60.
The size of the tests is set at 5% and the alternative hypotheses are summarized by two measures ω∗

1 and ω∗
2 ,

where (T −K −1)ω∗
1 and (T −K −1)ω∗

2 are the eigenvalues of the noncentrality matrix THĜ−1. Numbers that
are boldfaced indicate the test has the highest power among the three tests.

Likelihood Ratio Test
ω∗

2 = 0.0 ω∗
2 = 0.3 ω∗

2 = 0.6 ω∗
2 = 0.9 ω∗

2 = 1.2 ω∗
2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0823 0.1251

ω∗
1 = 0.6 0.1226 0.1752 0.2338

ω∗
1 = 0.9 0.1724 0.2307 0.2952 0.3612

ω∗
1 = 1.2 0.2260 0.2913 0.3596 0.4257 0.4913

ω∗
1 = 1.5 0.2834 0.3533 0.4228 0.4897 0.5533 0.6127

Wald Test
ω∗

2 = 0.0 ω∗
2 = 0.3 ω∗

2 = 0.6 ω∗
2 = 0.9 ω∗

2 = 1.2 ω∗
2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0825 0.1243

ω∗
1 = 0.6 0.1241 0.1735 0.2292

ω∗
1 = 0.9 0.1739 0.2289 0.2901 0.3546

ω∗
1 = 1.2 0.2299 0.2905 0.3547 0.4193 0.4834

ω∗
1 = 1.5 0.2902 0.3538 0.4195 0.4829 0.5450 0.6042

Lagrange Multiplier Test
ω∗

2 = 0.0 ω∗
2 = 0.3 ω∗

2 = 0.6 ω∗
2 = 0.9 ω∗

2 = 1.2 ω∗
2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0820 0.1260

ω∗
1 = 0.6 0.1216 0.1754 0.2362

ω∗
1 = 0.9 0.1685 0.2314 0.2981 0.3650

ω∗
1 = 1.2 0.2199 0.2902 0.3617 0.4296 0.4962

ω∗
1 = 1.5 0.2731 0.3496 0.4234 0.4930 0.5589 0.6195

57



Table III
Power of Step-Down Test of Spanning Under Normality

The table presents the probabilities of rejection of step-down test for two different alternatives, conditional on
the frontier of two benchmark assets is given in Figure 3. The first alternative (∆a = 0.0229) is a test asset
that doubles the slope of the asymptote to the efficient hyperbola of the two benchmark assets. The second
alternative (∆c = 76.69) is a test asset that reduces the standard deviation of the global minimum-variance
portfolio of the two benchmark assets from 4.9%/month to 4.5%/month. The step-down test is a sequential test.
The first test is an F -test on α = 0N and the second test is an F -test of δ = 0N conditional on the restriction of
α = 0N . The null hypothesis of spanning is only accepted if we accept both tests. α1 and α2 are the significance
levels for the first and the second F -test, respectively. The number of time series observations is 62.

Probability of Rejection

Significance Levels ∆a = 0.0229 ∆a,∆b = 0
α1 α2 ∆b,∆c = 0 ∆c = 76.69

0.00000 0.05000 0.05133 0.91981
0.02532 0.02532 0.16149 0.87008
0.04040 0.01000 0.19416 0.78207
0.04905 0.00100 0.20955 0.51506
0.04914 0.00090 0.20971 0.50289
0.04924 0.00080 0.20986 0.48942
0.04933 0.00070 0.21002 0.47432
0.04943 0.00060 0.21018 0.45715
0.04952 0.00050 0.21033 0.43722
0.04962 0.00040 0.21049 0.41348
0.04971 0.00030 0.21064 0.38398
0.04981 0.00020 0.21080 0.34476
0.04990 0.00010 0.21095 0.28458
0.04995 0.00005 0.21103 0.23337
0.04996 0.00004 0.21104 0.21878
0.04997 0.00003 0.21106 0.20128
0.04998 0.00002 0.21107 0.17904
0.04999 0.00001 0.21109 0.14711
0.05000 0.00000 0.21100 0.05000
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Table IV
Sizes of Small Sample Tests of Spanning Under Nonnormality of Residuals

The table presents the probabilities of rejection of Wald (W ), likelihood ratio (LR), and Lagrange multiplier
(LM) tests of spanning under the null hypothesis when the residuals follow a multivariate Student-t distribution
with five degrees of freedom. The rejection decision is based on 95th percentile of their exact distributions under
normality and the results for different values of the number of benchmark assets (K), test assets (N), and time
series observations (T ) are based on 100,000 simulations.

Actual Probabilities of Rejection

K N T W LR LM

2 2 60 0.048 0.048 0.048
120 0.049 0.050 0.050
240 0.051 0.051 0.051

5 60 0.047 0.048 0.048
120 0.049 0.049 0.049
240 0.050 0.050 0.050

10 60 0.047 0.047 0.047
120 0.046 0.046 0.046
240 0.047 0.049 0.050

25 60 0.046 0.047 0.047
120 0.046 0.046 0.046
240 0.047 0.048 0.048

5 2 60 0.049 0.048 0.048
120 0.051 0.051 0.051
240 0.051 0.051 0.051

5 60 0.047 0.047 0.048
120 0.049 0.049 0.049
240 0.050 0.050 0.050

10 60 0.047 0.047 0.047
120 0.048 0.048 0.048
240 0.049 0.049 0.048

25 60 0.046 0.046 0.047
120 0.046 0.046 0.046
240 0.048 0.048 0.048

10 2 60 0.050 0.049 0.049
120 0.049 0.049 0.049
240 0.051 0.051 0.051

5 60 0.048 0.048 0.048
120 0.049 0.049 0.050
240 0.050 0.051 0.050

10 60 0.048 0.048 0.048
120 0.049 0.049 0.049
240 0.049 0.049 0.049

25 60 0.048 0.048 0.048
120 0.047 0.047 0.047
240 0.047 0.047 0.047
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Table V
Sizes of Spanning Tests Under Multivariate Student-t Returns

The table presents the probabilities of rejection of using regular Wald test (W ) and two GMM Wald tests (Wa

and W e
a ) of spanning under the null hypothesis when the returns follow a multivariate Student-t distribution

with five and with ten degrees of freedom. The number of benchmark assets is two and they are chosen to
have the same characteristics as the value-weighted and equally weighted market portfolios of the NYSE. The
rejection decisions of the Wald tests are based on 95th percentile of χ2

2N . The table also presents the average
ratios of the regular Wald tests to the GMM Wald tests. Results for different values of number of test assets
(N) and time series observations (T ) are based on 100,000 simulations.

Actual Probabilities of Rejection Average Average

N T W Wa W e
a W/Wa W/W e

a

Degrees of Freedom = 5

2 60 0.195 0.166 0.091 1.141 1.474
120 0.197 0.113 0.078 1.305 1.564
240 0.204 0.084 0.070 1.452 1.648

5 60 0.332 0.409 0.121 0.942 1.450
120 0.313 0.240 0.079 1.155 1.547
240 0.318 0.150 0.064 1.338 1.635

10 60 0.555 0.832 0.231 0.685 1.424
120 0.469 0.536 0.112 0.962 1.519
240 0.459 0.309 0.073 1.191 1.609

25 60 0.979 1.000 0.844 0.138 1.386
120 0.851 0.995 0.346 0.569 1.480
240 0.756 0.870 0.137 0.892 1.570

Degrees of Freedom = 10

2 60 0.116 0.134 0.090 1.003 1.136
120 0.101 0.090 0.071 1.070 1.148
240 0.095 0.070 0.063 1.113 1.156

5 60 0.194 0.319 0.127 0.872 1.144
120 0.148 0.172 0.083 0.993 1.155
240 0.130 0.107 0.066 1.066 1.162

10 60 0.373 0.747 0.243 0.677 1.142
120 0.239 0.399 0.121 0.878 1.155
240 0.183 0.201 0.079 0.998 1.162

25 60 0.942 1.000 0.871 0.157 1.136
120 0.636 0.982 0.402 0.583 1.151
240 0.406 0.724 0.172 0.826 1.160
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Table VI
Sizes of GMM Wald Tests of Spanning Under Multivariate Normal Returns

The table presents the probabilities of rejection of three SDF based (J1 to J3) and a regression based GMM Wald
(Wa) tests of spanning under the null hypothesis with the returns follow a multivariate normal distribution.
The rejection decision is based on 95th percentile of their asymptotic distributions of χ2

2N , and the results for
different values of number of benchmark assets (K), test assets (N), and time series observations (T ) are based
on 100,000 simulations.

Actual Probabilities of Rejection

K N T J1 J2 J3 Wa

2 2 60 0.064 0.086 0.097 0.114
120 0.054 0.065 0.071 0.078
240 0.050 0.055 0.058 0.063

5 60 0.120 0.189 0.218 0.260
120 0.072 0.103 0.114 0.137
240 0.056 0.070 0.075 0.087

10 60 0.366 0.543 0.596 0.658
120 0.135 0.224 0.254 0.308
240 0.075 0.110 0.121 0.150

25 60 1.000 1.000 1.000 1.000
120 0.751 0.908 0.929 0.952
240 0.252 0.439 0.482 0.573

5 2 60 0.075 0.099 0.110 0.132
120 0.060 0.072 0.075 0.087
240 0.053 0.059 0.061 0.067

5 60 0.147 0.221 0.250 0.305
120 0.083 0.116 0.125 0.153
240 0.061 0.076 0.079 0.093

10 60 0.428 0.598 0.648 0.722
120 0.157 0.251 0.276 0.342
240 0.085 0.122 0.131 0.164

25 60 1.000 1.000 1.000 1.000
120 0.785 0.924 0.941 0.964
240 0.274 0.464 0.496 0.602

10 2 60 0.103 0.130 0.145 0.172
120 0.069 0.082 0.087 0.099
240 0.058 0.064 0.066 0.072

5 60 0.206 0.285 0.325 0.395
120 0.102 0.137 0.151 0.183
240 0.070 0.085 0.089 0.104

10 60 0.539 0.686 0.747 0.821
120 0.196 0.298 0.327 0.402
240 0.096 0.137 0.147 0.183

25 60 1.000 1.000 1.000 1.000
120 0.842 0.947 0.960 0.980
240 0.314 0.505 0.537 0.643
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Table VII
Mean-Variance Spanning Tests on Seven Foreign Equity Indices Under Normality
The table presents two sets of mean-variance spanning tests on seven foreign equity indices, using the S&P 500
index and the 30-year U.S. Treasury bond as benchmark assets. The first test is an F -test of H0 : α = 0N and
δ = 0N . The second test is a step down test where F1 is an F -test of α = 0N , and F2 is an F -test of δ = 0N

conditional on α = 0N . The two tests are performed on each foreign equity index as well as jointly on all seven
foreign equity indices. The reported p-values are exact under the normality assumption on the residuals. The
results are presented for the entire sample period as well as for its two subperiods.

Step-Down Test

Country α̂ δ̂ F -test p-value F1 p-value F2 p-value

Entire Period: 1970/1—1999/12

Australia 0.0025 0.551 12.334 0.000 0.531 0.811 24.169 0.000
Canada −0.0002 0.156 2.982 0.052 0.008 1.000 5.971 0.000
France 0.0051 0.331 5.064 0.007 2.385 0.021 7.713 0.000

Germany 0.0054 0.375 7.674 0.001 3.281 0.002 11.990 0.000
Italy 0.0042 0.567 9.154 0.000 1.051 0.395 17.255 0.000
Japan 0.0085 0.571 13.055 0.000 5.818 0.000 20.024 0.000
U.K. 0.0037 0.188 1.757 0.174 1.258 0.270 2.254 0.030

All 3.783 0.000 1.080 0.376 6.648 0.000

First Subperiod: 1970/1—1984/12

Australia 0.0007 0.361 2.538 0.082 0.019 1.000 5.086 0.000
Canada 0.0017 0.043 0.187 0.829 0.288 0.958 0.087 0.999
France 0.0033 0.513 4.983 0.008 0.443 0.874 9.554 0.000

Germany 0.0036 0.504 7.962 0.000 0.835 0.560 15.103 0.000
Italy −0.0002 0.757 8.999 0.000 0.002 1.000 18.099 0.000
Japan 0.0116 0.563 10.199 0.000 7.504 0.000 12.440 0.000
U.K. 0.0037 0.137 0.414 0.662 0.431 0.882 0.397 0.903

All 2.993 0.000 1.235 0.286 4.900 0.000

Second Subperiod: 1985/1—1999/12

Australia 0.0052 0.760 12.263 0.000 1.186 0.313 23.316 0.000
Canada −0.0018 0.268 6.963 0.001 0.492 0.840 13.472 0.000
France 0.0063 0.148 1.284 0.279 2.196 0.037 0.370 0.919

Germany 0.0063 0.238 1.655 0.194 1.876 0.076 1.427 0.197
Italy 0.0078 0.381 2.205 0.113 1.735 0.104 2.665 0.012
Japan 0.0051 0.563 4.594 0.011 0.776 0.608 8.423 0.000
U.K. 0.0041 0.245 2.387 0.095 1.351 0.229 3.417 0.002

All 2.560 0.002 0.790 0.597 4.481 0.000
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Table VIII
Asymptotic Mean-Variance Spanning Tests on Seven Foreign Equity Indices

The table presents four mean-variance spanning tests on seven foreign equity indices, using the S&P 500 index
and the 30-year U.S. Treasury bond as benchmark assets. The first two tests, W e

a and Wa are regression based
GMM Wald tests. Wa is valid under general distribution whereas W e

a is only valid when returns follow a
multivariate elliptical distribution. The other two tests, J2 and J3, are SDF based GMM Wald tests. J2 is the
version used by Bekaert and Urias (1996), and J3 is the version used by DeSantis (1993). The four tests are
performed on each foreign equity index as well as jointly on all seven foreign equity indices. All four tests have
an asymptotic χ2

2N distribution, where N is the number of test assets, and the reported p-values are asymptotic
ones. The results are presented for the entire sample period as well as for its two subperiods.

Regression Based SDF Based

Country W e
a p-value Wa p-value J2 p-value J3 p-value

Entire Period: 1970/1—1999/12

Australia 11.172 0.004 20.742 0.000 17.566 0.000 20.872 0.000
Canada 3.925 0.140 4.428 0.109 4.344 0.114 4.613 0.100
France 7.303 0.026 9.836 0.007 9.490 0.009 11.051 0.004

Germany 13.773 0.001 14.583 0.001 13.551 0.001 14.983 0.001
Italy 15.459 0.000 13.687 0.001 11.568 0.003 15.104 0.001
Japan 23.294 0.000 23.077 0.000 20.285 0.000 25.939 0.000
U.K. 1.321 0.517 3.260 0.196 2.559 0.278 2.617 0.270

All 26.743 0.021 48.329 0.000 39.984 0.000 61.513 0.000

First Subperiod: 1970/1—1984/12

Australia 2.949 0.229 4.146 0.126 3.805 0.149 4.151 0.125
Canada 0.329 0.848 0.316 0.854 0.314 0.855 0.315 0.854
France 5.383 0.068 9.782 0.008 8.262 0.016 10.570 0.005

Germany 11.244 0.004 13.315 0.001 11.895 0.003 15.088 0.001
Italy 11.857 0.003 22.865 0.000 17.026 0.000 20.902 0.000
Japan 15.709 0.000 18.247 0.000 17.988 0.000 24.679 0.000
U.K. 0.402 0.818 0.974 0.615 0.880 0.644 0.890 0.641

All 26.227 0.024 45.627 0.000 35.093 0.001 57.247 0.000

Second Subperiod: 1985/1—1999/12

Australia 7.176 0.028 23.723 0.000 18.304 0.000 22.425 0.000
Canada 7.645 0.022 12.091 0.002 11.804 0.003 12.829 0.002
France 2.515 0.284 3.182 0.204 3.282 0.194 3.417 0.181

Germany 3.149 0.207 3.679 0.159 3.558 0.169 3.700 0.157
Italy 4.415 0.110 3.289 0.193 3.148 0.207 3.543 0.170
Japan 9.566 0.008 8.128 0.017 6.917 0.031 8.740 0.013
U.K. 3.413 0.181 5.031 0.081 4.684 0.096 4.914 0.086

All 21.359 0.093 36.764 0.001 28.701 0.011 38.369 0.000
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