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1 Introduction

In his seminal paper, Samuelson (1958) constructs the overlapping generation
model with consumption loans, examines the determination of interest rates
and suggests for further research the OLG model with capital.1 By introduc-
ing production employing a durable capital good into the Samuelson (1958)
model, Diamond (1965) examines the long-run competitive equilibrium in a
growth model with both consumption and production loans and explores the
effects on this equilibrium of government debt.
Gale (1973) find two kinds of steady state paths and examines their

global stability properties in a Samuelson-type pure exchagne economy. And
whether there exist multiple kinds of steady state paths in the Diamond
(1965) model with production loans is an open question. The paper wants
to answer the question. By utilizing an overlapping generations model with
both consumption and production loans, the paper shows that there do exist
two kinds of steady state paths. Furthermore, the local stability of those
multiple (kinds of) steady states is examined.
The paper is organized as follows. Section 2 describes the model. Section

3 examines competitive quilibrium and multiple steady state paths. By ex-
ecuting the phase diagram analysis, section 4 investigates the local stability
of the steady states. The conclusion is in section 5. The proof appears in
the Appendix.

2 Model

The economy being considered is assumed to have an infinite future. Each
individual lives for two periods, working in the first period (young) while
being retired in the second (old). The birth rate of the population is a given
constant, n. And the total number of people in period t is the sum of the
young people Lt = L0(1+n)t and the old people Lt−1 = L0(1+n)t−1, namely,

Pt ≡ Lt + Lt−1 = L0(2 + n)(1 + n)t−1,

which tells that the population growth rate is also n. It is assumed that all
consumers are identical as to preferences and income streams and differ only

1It is well known that Samuelson’s model supplies an analytical framework for the
existence of money.
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as regards their dates of birth. A consumer who is born in period t works
with wage wt, consumes cy,t and saves st(= wt − cy,t) in period t; and in
period t + 1 he consumes the gross interest income of the savings of period
t, i.e., co,t+1 = (1 + rt+1)st and dies. His utility function is

U(cy,t, co,t+1) = u(cy,t) + βu(co,t+1), (1)

where β is the time preference rate, and u(c) is a strictly positive, strictly in-
creasing, and strictly concave function satisfying the Inada conditions. Then,
given the prices wt and rt+1, the maximization problem of the consumer born
in period t is to maximize (1) subjecting to the budget constraints

cy,t + st = wt, co,t+1 = (1 + rt+1)st. (2)

The optimality condition is

u′(wt − st) = β(1 + rt+1)u
′((1 + rt+1)st), (3)

which determines implicity the savings function of the consumer who was
born in period t as a function of those prices by the strict concavity of u,

st = s(wt, rt+1). (4)

And then he consumes cy,t = wt − s(wt, rt+1) in period t and consumes
co,t+1 = (1 + rt+1)s(wt, rt+1) in period t+ 1.
With the neoclassical production technology Yt = F (Kt, Lt) and the de-

preciate rate δ, a representative firm produces the unique commordity in the
economy by employing both capital Kt with the rental rate rt and labor Lt
with the wage cost wt. The total productive capital Kt includes private cap-
ital Ks,t and public capital Kg,t, i.e., Kt = Ks,t + Kg,t. It is assumed that
public capital has an exogenously given accumulation process with the same
rate of return as private capital,

Kg,t+1 = (1 + rt)Kg,t. (5)

The labor force in period t must be the young people in period t, Lt. The
profit maximization problem of the representative firm is as follows,

Πt = F (Kt, Lt)− wtLt − (rt + δ)Kt.

With the definitions of the per-labor capital kt ≡ Kt
Lt
and the per-labor pro-

duction f(kt) ≡ F (Kt, Lt), the optimality leads to
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rt = f ′(kt)− δ, wt = f(kt)− ktf ′(kt). (6)

3 Competitive Equilibrium and Steady States

In order to examine the competitive equilibrium, we should attach the market
clearing condition of the commordity market:

co,tLt−1 + cy,tLt +Kt+1 − (1− δ)Kt = F (Kt, Lt), (7)

which tells that in period t the sum of the total consumption co,tLt−1 +
cy,tLt and total investment Kt+1− (1− δ)Kt is equal to the total production
F (Kt, Lt). In Samuelson (1958) and Gale (1973)’s pure exchange economies,
only consumption loans are considered. And the market-clearing condition
is that the total savings in the economy must cancel out to zero in every
period. However, the model considered here is a Diamond-type OLG model
with both consumption loans and production loans. In every period, the
total saving F (Kt, Lt)− (co,tLt−1 + cy,tLt) is equal to the total investment
(Kt+1 − (1− δ)Kt) in each period. And the amount of the total saving or
investment is exactly the amout of production loans.2 By substituting the
consumption functions, the savings function (4), and the pricing functions
(5), we obtain the dynamic accumulation equation of capital per labor:

[f ′(kt) + (1− δ)] [s (w(kt−1), r(kt))− (1 + n)kt] = (1+n) [s (w(kt), r(kt+1))− (1 + n)kt+1] .
(8)

In order to obtain the steady state equilibria, setting kt+1 = kt = k∗,
st+1 = st = s∗ in equation (8) gives rise to

[f ′(k∗)− (δ + n)] [s∗ − (1 + n)k∗] = 0, (9)

from which we can derive the following two kinds of steady states

f ′(k∗1)− δ = n, s (w(k∗2), r(k
∗
2)) = (1 + n)k∗2. (10)

2Certainly, if the production function is just a linear funtion about labor and the total
investment is zero in each period, the model here will degenerate to the Samuelson (1958)
and Gale (1973) models without production loans..
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Before presenting the proposition, we examine the two kinds of steady states
at first. The steady state capital stock of the first type satisfies the modified
golden rule.3 Furthermore, equations (6) and (9) tell us that r∗1 (= f ′(k∗1)− δ) =
n, which shows that the equilibrium interest rate depends only on the struc-
ture of the population (i.e., the population growth rate) and has nothing
to do with the technology and preference of the economy. The equilibrium
interest rate determined by the structure of the population is called “the
biological rate of interest”defined by Samuelson (1958) and followed by Gale
(1973). To comprehend the steady state of the second hand, we multiply
both sides of equation (9) by Lt−1,

s (w(k∗2), r(k
∗
2))Lt−1 = k∗2Lt(= K∗). (11)

The left-hand side of equation (11) is the total private savings in period t,
and the right-hand side stands for the aggregate capital in period t. Their
equality tells that the public capital (or debt) is zero in the economy. And
this second kind of steady states are called “balanced”ones in the sence of
zero public capital.4Obviously, there must be an equilibrium interest rate
r∗2 (= f ′(k∗2)− δ) associated with the balanced steady states. Similar to
Gale’s (1973) pure exchange economy, we have the following proposition and
definition.

Proposition 1 In the overlapping generations model with production loans,
there exist two kinds of steady states: one is the golden-rule steady state with
“the biological rate of interest”, and the other is the balanced steady states
without any role of public capital (or debt).5

Definition 2 A model will be called classical (Samuelson) if k∗1 > k∗2 (k∗1 <
k∗2).

The definition is a generalization (to the economy with production) of
Gale’s (1973) definition which depends on the exogenous parameters in pure

3This is the standard result on the nature of the golden rule path, see, e.g., Phelps
(1961) and Diamond (1965).

4Gale (1973) calls the no-trade (neither borrow nor lend, i.e., aggregate assets are zero)
stationary equilibrium “balanced”in pure exchange economies. And this balance is in the
sense of balanced accounts, not balanced growth. In this paper, the balanced steady states
are those without public assets or debts.

5We exclude the case that the two kinds of equilibria coincide (i.e., r∗2 = n).
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exchange economies. And they are essentially the same. The intuition will
be revealed in the next section: in the classical case people consume more
and save less in both kinds of stationary equilibria, and in the Samuelson
case people consume less and save more in these equilibria.

Theorem 3 A model is classical (Samuelson) if and only if r∗2 > n (r∗2 < n).
Proof. It can be easily proved by using (6) and (10). And we omit it.

4 Local Stability of the Equilibria and Phase
Diagram Analysis

In this section, we will examine the local stability of these two (kinds)
of steady states and their local dynamics. For the second kind of steady
state, there may exist multiple equilibrium with different assumptions on the
production and utility functions, to which we will not attach importance.6

Hence, for simplicity, we assume log utility, Cob-Douglas technology, and
complete depreciation: u(c) = log c, Y = AKαL1−α, and δ = 1.
Substituting the assumptions into the optimality conditions in the above

section leads to the savings function

st =
β

1− βwt, (12)

the consumption functions

cy,t =
wt

1− β , co,t+1 =
β(1 + rt+1)

1− β wt, (13)

the pricing functions

rt = Aαkα−1t − 1, wt = A(1− α)kαt , (14)

and the two (kinds of) steady states

k∗1 =

(
Aα

1 + n

) 1
1−α

, k∗2 =

(
A (1− α) β

(1 + n) (1 + β)

) 1
1−α

, (15)

6In his seminal paper, Samuelson (1958) has pointed out the existence of multiple
equilibrium. And Bliss (2008) and Hiraguchi (2012) gives some particular examples of
multiple equilibrium in the Diamond capital model numerically or analytically.
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where k∗1 is the golden rule level of the steady state and k
∗
2 is the balanced

steady state.

Proposition 4 A model is classical (Samuelson) if and only if α
1−α >

β
1+β(

α
1−α <

β
1+β

)
.

Proof. The conclusion can be drawn from the relations k∗1 > (<) k∗2 ⇐⇒
r∗2 > (<)n ⇐⇒ α

1−α > (<) β
1+β
, which is derived from definition 2, theorem

3, and (15).

In order to examine the stability of the steady state and the dynamics
of the system, we are going to execute the phase diagram analysis. Define
kg,t ≡ Kg,t

Lt
and ks,t ≡ Ks,t

Lt
as the public capital per labor and private capital

per labor. Hence,

Kt = Ks,t +Kg,t ⇐⇒ kt = ks,t + kg,t. (16)

On one hand, equations (5), (14) and (16) give rise to

kg,t+1 =
Aα (kg,t + ks,t)

α−1

1 + n
kg,t; (17)

On the other hand, by the assumption of complete depreciation, we know
that the private capital stock of any time t is the total savings of the old
people at time t, namely, Ks,t+1 = Ltst. Putting (12), (14), and (16) into the
above equation and dividing the derived equation by Lt+1 turn out to

ks,t+1 =
A(1− α)β (kg,t + ks,t)

α

(1 + n)(1 + β)
. (18)

Equations (17) and (18) can determine the whole dynamics of the model.
With the definition of the steady state (k∗s , k

∗
g) which subjects to k

∗
s = ks,t+1 =

ks,t and k∗g = kg,t+1 = kg,t, it is straightforward to derive the two (kinds of)
steady states from equations (17) and (18):

(k∗s1, k
∗
g1) =

(
(1− α) β

1 + β

(
A

1 + n

) 1
1−α

α
α

1−α ,

(
Aα

1 + n

) 1
1−α

− k∗s1

)
, (19)

(k∗s2, k
∗
g2) =

((
A (1− α) β

(1 + n) (1 + β)

) 1
1−α

, 0

)
, (20)
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with the associated steady state levels of interest rates r∗1 = n, r∗2 = (1+n)α((1+β))
(1−α)β .

And it is easy to check that k∗1 = k∗s1 + k∗g1, and k
∗
2 = k∗s2 + k∗g2.

The dynamics of the system composed by equations (17) and (18) can be
described in the phase space (ks, kg). From equation (17), we know that pub-

lic capital keeps constant on the straight line AB
(
i.e., kg + ks =

(
Aα
1+n

) 1
1−α
)

and the ks-axis (i.e., kg ≡ 0). Furthermore, if kg > 0 (i.e., public capital),
then public capital decreases above the line AB while increases below it; if
kg < 0 (i.e., public debt), then public debt increases above the line AB while
decreases below it. Meanwhile, from (18), we know that private capital keeps

constant on the smooth curveOCD
(
i.e., kg =

(
(1+n)(1+β)
A(1−α)β

) 1
α
k
1
α
s − ks

)
, which

is strictly concave and passes through the origin. It is not hard to know that
private capital increases above the curve and decreases below it. If putting
these two curves into the same phase space, it is easy to find that the line
AB and the curve OCD intersect only once in the space, but with two pos-
sibilities: the classical and Samuelson case.
(1) The classical case

(
α
1−α >

β
1+β

)
.

In classical case (figure 1), (k∗s1, k
∗
g1) (E1 in figure 1) is the golden-rule

steady state with “the biological interest rate”r∗1 (= n) and (k∗s2, k
∗
g2) (E2 in

figure 1) is the balanced steady state with the balanced interest rate r∗2 (> n).
And they satisfy k∗s1 > k∗s2, k

∗
g1 > k∗g2(= 0), and hence k∗1 > k∗g2. The direction

field of the system in figure 1 shows that the golden rule steady state is
locally stable and the balanced steady state is locally saddle-point stable.
The rigorous proof of the stability results can be found in the mathematical
appendix.
(Insert figure 1 here)

(2) The Samuelson case
(

α
1−α <

β
1+β

)
.

Similarly, in Samuelson case (figure 2), (k∗s1, k
∗
g1) (E1 in figure 2) is the

golden-rule steady state with “the biological interest rate”r∗1 (= n) and (k∗s2, k
∗
g2)

(E2 in figure 2) is the balanced steady state with the balanced interest rate
r∗2 (< n). And they satisfy k∗s1 < k∗s2, k

∗
g1 < k∗g2(= 0), and hence k∗1 < k∗g2.

The direction field of the system in figure 2 shows that the golden rule steady
state is locally saddle-point stable and the balanced steady state is locally
stable. The proof can be also found in the mathematical appendix.
(Insert figure 2 here)

Proposition 5 In the overlapping generations model with production loans,
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in the classical case the golden-rule steady state is locally stable and the bal-
anced steady state is locally saddle-point stable, however, in Samuelson case
the golden-rule steady state is locally saddle-point stable and the balanced
steady state is locally stable.

5 Conclusion

By utilizing an overlapping generations model with both consumption and
production loans, the paper shows that there do exist two kinds of steady
state paths, similar to the pure exchange economies examined by Gale (1973).
Furthermore, the local stability of those multiple (kinds of) steady state is
investigated.

6 Appendix

In this appendix, we examine the local stability of the two (kinds of) steady
states. Define k̃i,t = ki,t − k∗i , i = g, s. The dynamic system given by (17)
and (18) can be linearized around the steady state as

k̃g,t+1 ' kggk̃g,t + kgsk̃g,t,

k̃s,t+1 ' ksgk̃g,t + kssk̃s,t,

where kgg =
Aα(k∗g+k∗s)

α−1

(1+n)

(
(α−1)k∗g
(k∗g+k∗s)

+ 1

)
, kgs =

(
Aα(α−1)(k∗g+k∗s)

α−2
k∗g

(1+n)

)
,

ksg =
Aα(1−α)β(k∗g+k∗s)

α−1

(1+n)(1+β)
, kss =

Aα(1−α)β(k∗g+k∗s)
α−1

(1+n)(1+β)
.

Since the procedure is similar, we consider only the classical case. In
the golden-rule steady state E1, the matrix form of the linearized system
becomes:

[
k̃g,t+1
k̃s,t+1

]
'
[

1− (α− 1)
(

1− (1−α)β
α(1+β)

)
(α− 1)

(
1− (1−α)β

α(1+β)

)
(1−α)β
1+β

(1−α)β
1+β

][
k̃g,t
k̃s,t

]

Define the Jacobian matrix of the linearized system as M1 and its two eigen-
values as λ1, λ2. Hence, we have
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λ1 + λ2 = trace (M1) = α +
(1− α) β

α (1 + β)
, λ1λ2 = det (M1) =

(1− α) β

α (1 + β)
.

Their solutions are: λ1 = (1−α)β
α(1+β)

∈ (0, 1), λ2 = α ∈ (0, 1), which show
that the golden-rule steady state is locally stable. Similarly, in the balanced
steady state E2, the matrix form of the linearized system is[

k̃g,t+1
k̃s,t+1

]
'
[

α(1+β)
(1−α)β 0

α α

][
k̃g,t
k̃s,t

]
.

Define the Jacobian matrix of the linearized system as M2 and its two eigen-
values as µ1, µ2. Hence,

µ1 + µ2 = trace (M1) = α +
α (1 + β)

(1− α) β
, µ1µ2 = det (M1) =

α2 (1 + β)

(1− α) β
.

The corresponding solutions are: µ1 = α(1+β)
(1−α)β ∈ (1,∞), µ2 = α ∈ (0, 1),

which tell that the balanced steady state is locally saddly-point stable. �
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